A multipartite Hajnal–Szemerédi theorem
Tài liệu tham khảo
Catlin, 1980, On the Hajnal–Szemerédi theorem on disjoint cliques, Util. Math., 17, 163
Csaba, 2012, Approximate multipartite version of the Hajnal–Szemerédi theorem, J. Combin. Theory Ser. B, 102, 395, 10.1016/j.jctb.2011.10.003
Daykin, 1981, Degrees giving independent edges in a hypergraph, Bull. Aust. Math. Soc., 23, 103, 10.1017/S0004972700006924
Fischer, 1999, Variants of the Hajnal–Szemerédi theorem, J. Graph Theory, 31, 275, 10.1002/(SICI)1097-0118(199908)31:4<275::AID-JGT2>3.0.CO;2-F
Hakimi, 1962, On the realizability of a set of integers as degrees of the vertices of a graph, SIAM J. Appl. Math., 10, 496, 10.1137/0110037
Keevash, 2014, A geometric theory for hypergraph matching, Mem. Amer. Math. Soc., 233
Kühn, 2009, Embedding large subgraphs into dense graphs, 137
Lo, 2013, A multipartite version of the Hajnal–Szemerédi theorem for graphs and hypergraphs, Combin. Probab. Comput., 22, 97, 10.1017/S096354831200048X
Magyar, 2002, Tripartite version of the Corrádi–Hajnal theorem, Discrete Math., 254, 289, 10.1016/S0012-365X(01)00373-9
Martin, 2008, Quadripartite version of the Hajnal–Szemerédi theorem, Discrete Math., 308, 4337, 10.1016/j.disc.2007.08.019