A multipartite Hajnal–Szemerédi theorem

Journal of Combinatorial Theory, Series B - Tập 114 - Trang 187-236 - 2015
Peter Keevash1, Richard Mycroft2
1Mathematical Institute, University of Oxford, Oxford, UK
2School of Mathematics, University of Birmingham, Birmingham, UK

Tài liệu tham khảo

Catlin, 1980, On the Hajnal–Szemerédi theorem on disjoint cliques, Util. Math., 17, 163 Csaba, 2012, Approximate multipartite version of the Hajnal–Szemerédi theorem, J. Combin. Theory Ser. B, 102, 395, 10.1016/j.jctb.2011.10.003 Daykin, 1981, Degrees giving independent edges in a hypergraph, Bull. Aust. Math. Soc., 23, 103, 10.1017/S0004972700006924 Fischer, 1999, Variants of the Hajnal–Szemerédi theorem, J. Graph Theory, 31, 275, 10.1002/(SICI)1097-0118(199908)31:4<275::AID-JGT2>3.0.CO;2-F Hakimi, 1962, On the realizability of a set of integers as degrees of the vertices of a graph, SIAM J. Appl. Math., 10, 496, 10.1137/0110037 Keevash, 2014, A geometric theory for hypergraph matching, Mem. Amer. Math. Soc., 233 Kühn, 2009, Embedding large subgraphs into dense graphs, 137 Lo, 2013, A multipartite version of the Hajnal–Szemerédi theorem for graphs and hypergraphs, Combin. Probab. Comput., 22, 97, 10.1017/S096354831200048X Magyar, 2002, Tripartite version of the Corrádi–Hajnal theorem, Discrete Math., 254, 289, 10.1016/S0012-365X(01)00373-9 Martin, 2008, Quadripartite version of the Hajnal–Szemerédi theorem, Discrete Math., 308, 4337, 10.1016/j.disc.2007.08.019