A multicriteria evaluation methodology for assessing the impact of COVID-19 in EU countries
Tài liệu tham khảo
Bedford, 2020, COVID-19: Towards controlling of a pandemic, Lancet, 395, 1015, 10.1016/S0140-6736(20)30673-5
Colbourn, 2020, COVID-19: Extending or relaxing distancing control measures, Lancet Publ. Health, 1
World Health Organization (WHO), 2022
Altay, 2006, OR/MS research in disaster operations management, European J. Oper. Res., 175, 475, 10.1016/j.ejor.2005.05.016
Currie, 2020, How simulation modelling can help reduce the impact of COVID-19, J. Simulation, 10.1080/17477778.2020.1751570
Choi, 2021, Fighting against COVID-19: What operations research can help and the sense-and-respond framework, Ann. Oper. Res., 10.1007/s10479-021-03973-w
Queiroz, 2021, A structured literature review on the interplay between emerging technologies and COVID-19 - insights and directions to operations fields, Ann. Oper. Res., 10.1007/s10479-021-04107-y
Abdin, 2021, An optimization model for planning, testing and control strategies to limit the spread of a pandemic – The case of COVID-19, European J. Oper. Res.
Amaratunga, 2021, Socio-economic impact on COVID-19 cases and deaths and its evolution in New Jersey, Ann. Oper. Res.
Sinha, 2021, Strategies for ensuring required service level for COVID-19 herd immunity in indian vaccine supply chain, European J. Oper. Res.
Baveja, 2020, Stopping Covid-19: A pandemic-management service value chain approach, Ann. Oper. Res., 289, 173, 10.1007/s10479-020-03635-3
Eldabi, 2007, Simulation modelling in healthcare: Reviewing legacies and investigating futures, J. Oper. Res. Soc., 58, 262, 10.1057/palgrave.jors.2602222
Kotiadis, 2014, A participative and facilitative conceptual modelling framework for discrete event simulation studies in healthcare, J. Oper. Res. Soc., 65, 197, 10.1057/jors.2012.176
Viana, 2014, Combining discrete event simulation and system dynamics in a healthcare setting: A composite model for Chlamydia infection, European J. Oper. Res., 237, 196, 10.1016/j.ejor.2014.02.052
Tako, 2015, PartiSim: A multi-methodology framework to support facilitated simulation modelling in healthcare, European J. Oper. Res., 244, 555, 10.1016/j.ejor.2015.01.046
Araz, 2011, A simulation model for policy decision analysis: A case of pandemic influenza on a university campus, J. Simul., 5, 89, 10.1057/jos.2010.6
Ivanov, 2020, Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case, Transp. Res. E, 136, 10.1016/j.tre.2020.101922
Epstein, 2009, Modelling to contain pandemics, Nature, 460, 687, 10.1038/460687a
Katsaliaki, 2007, Using simulation to improve the blood supply chain, J. Oper. Res. Soc., 58, 219, 10.1057/palgrave.jors.2602195
Osorio, 2017, Simulation–optimization model for production planning in the blood supply chain, Health Care Manag. Sci., 20, 548, 10.1007/s10729-016-9370-6
Lane, 2008, System dynamics mapping of acute patient flows, J. Oper. Res. Soc., 59, 213, 10.1057/palgrave.jors.2602498
Litvack, 2008, Managing the overflow of intensive care patients, European J. Oper. Res., 185, 998, 10.1016/j.ejor.2006.08.021
Griffiths, 2010, A simulation model of bed-occupancy in a critical care unit, J. Simul., 4, 52, 10.1057/jos.2009.22
Bai, 2018, Operations research in intensive care unit management: A literature review, Health Care Manag. Sci., 21, 1, 10.1007/s10729-016-9375-1
Roy, 1996
Vincke, 1992
Belton, 2002
Araz, 2013, Integrating complex system dynamics of pandemic influenza with a multi-criteria decision making model for evaluating public health strategies, J. Syst. Sci. Syst. Eng., 22, 319, 10.1007/s11518-013-5220-y
Araz, 2013, Simulation modeling for pandemic decision making: A case study with bi-criteria analysis on school closures, Decis. Support Syst., 55, 564, 10.1016/j.dss.2012.10.013
Brennan, 2006, A taxonomy of model structures for economic evaluation of health technologies, Health Econ., 15, 1295, 10.1002/hec.1148
Araz, 2012, A new method of exercising pandemic preparedness through an interactive simulation and visualization, J. Med. Syst., 36, 1475, 10.1007/s10916-010-9608-7
Greco, 2016
Papathanasiou, 2018
Keeney, 1993
Rogers, 2000
Hokkanen, 1997, Choosing a solid waste management system using multicriteria decision analysis, Euro. J. Oper. Res., 98, 19, 10.1016/0377-2217(95)00325-8
Mousseau, 1995, Eliciting information concerning the relative importance of criteria, 17
Simos, 1990
Simos, 1990
Rogers, 1998, A new system for weighting environmental criteria for use within ELECTRE IIi, Euro. J. Oper. Res., 107, 552, 10.1016/S0377-2217(97)00154-9
Xidonas, 2009, A multicriteria methodology for equity selection using financial analysis, Comput. Oper. Res., 36, 3187, 10.1016/j.cor.2009.02.009
Behzadian, 2012, A state-of the-art survey of topsis applications, Expert Syst. Appl., 39, 13051, 10.1016/j.eswa.2012.05.056
Palczewskia, 2019, The fuzzy TOPSIS applications in the last decade, Proc. Comput. Sci., 159, 2294, 10.1016/j.procs.2019.09.404
Salih, 2019, Survey on fuzzy TOPSIS state-of-the-art between 2007 and 2017, Comput. Oper. Res., 104, 207, 10.1016/j.cor.2018.12.019
Hwang, 1981
Chen, 1992
Brans, 1985, A preference ranking organization method: the PROMETHEE method for MCDM, Manag. Sci., 31, 647, 10.1287/mnsc.31.6.647
Brans, 1986, How to select and how to rank projects: the PROMETHEE method, Euro. J. Oper. Res., 24, 228, 10.1016/0377-2217(86)90044-5
Roy, 1996, A theoretical framework for analyzing the notion of relative importance of criteria, J. Multi-Criteria Decis, Anal., 5, 145, 10.1002/(SICI)1099-1360(199606)5:2<145::AID-MCDA99>3.0.CO;2-5
Figueira, 2002, Determining the weights of criteria in the ELECTRE type methods with a revised Simos’ procedure, Euro. J. Oper. Res., 139, 317, 10.1016/S0377-2217(01)00370-8
International Monetary Fund (IMF), 2022, 10.1787/3a469970-en