A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

Nature Ecology and Evolution - Tập 1 Số 9 - Trang 1285-1291
Henry D. Adams1, Melanie Zeppel2, William R. L. Anderegg3, Henrik Hartmann4, Simon M. Landhäusser5, David T. Tissue6, Travis E. Huxman7, Patrick J. Hudson8, Trenton E. Franz9, Craig D. Allen10, Leander D. L. Anderegg11, G. Barron-Gafford12, David J. Beerling13, David D. Breshears14, Timothy J. Brodribb15, Harald Bugmann16, Richard C. Cobb17, Adam Collins18, L. Turin Dickman18, Honglang Duan19, B. E. Ewers20, Lucía Galiano21, David A. Gálvez5, Núria Garcia‐Forner22, Monica L. Gaylord23, Matthew J. Germino24, Arthur Geßler25, Uwe G. Hacke5, Rodrigo Hakamada26, Andy Hector27, Michael W. Jenkins28, Jeffrey M. Kane29, Thomas E. Kolb23, Darin J. Law14, James D. Lewis30, Jean Marc Limousin31, David M. Love3, Alison K. Macalady32, Jordi Martínez‐Vilalta33, Maurizio Mencuccini33, Patrick J. Mitchell34, J. D. Muss18, Michael J. O’Brien35, Anthony P. O’Grady34, Robert E. Pangle8, Elizabeth A. Pinkard34, Frida I. Piper36, J. Plaut8, William T. Pockman8, Joe Quirk13, Keith Reinhardt37, Francesco Ripullone38, Michael G. Ryan39, Anna Sala40, Sanna Sevanto18, John S. Sperry3, Rodrigo Vargas41, M. Vennetier42, Danielle A. Way43, Chonggang Xu18, Enrico A. Yépez44, Nate G. McDowell45
1Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA
2Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
3Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
4Biogeochemical Processes, Max-Planck Institute for Biogeochemistry, Jena, 7745, Germany
5Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada
6Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
7Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
8Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA,
9School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
10U.S. Geological Survey, Fort Collins Science Center, New Mexico Landscapes Field Station, Los Alamos, NM, 87544, USA
11Biology, University of Washington, Seattle, WA, 98195, USA
12B2 Earthscience, Biosphere 2, University of Arizona, Tucson, AZ 85721, USA
13Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
14School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA
15School of Biology, University of Tasmania, Hobart, Tasmania, 7001, Australia
16Forest Ecology, Department of Environmental Systems Science, ETH Zurich, Zurich 8092, Switzerland
17Department of Plant Pathology, University of California, Davis, CA 95616, USA.
18Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
19Institute of Ecology and Environmental Science, Nanchang Institute of Technology, Nanchang, Jiangxi, 330099, China
20Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
21Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
22Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Coimbra, 3000-456, Portugal
23School of Forestry, Northern Arizona University, Flagstaff, AZ 86011 USA
24U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, 83702, USA
25Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf 8903, Switzerland
26Department of Forest Sciences, University of Sao Paulo, Piracicaba, 13418900, Brazil
27Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
28Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
29Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA 95521, USA
30Louis Calder Center - Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, NY, 10504, USA
31Centre d’Ecologie Fonctionnelle et Evolutive, CNRS, Montpellier, 34293, France
32U.S. Agency for International Development, Washington, DC, 20001, USA
33CREAF, Cerdanyola del Valles, 8193, Spain
34CSIRO Land and Water, Hobart, Tasmania, 7005, Australia
35Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, La Cañada, Almería, E-04120, Spain
36Centro de Investigación en Ecosistemas de la Patagonia, Coyhaique, 5951822, Chile
37Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
38School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, Potenza, 85100, Italy
39Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA
40Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
41Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
42Irstea, UR RECOVER, Aix en Provence, 13182, France
43Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
44Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnologico de Sonora, Ciudad Obregon, Sonora, 85000, Mexico
45Pacific Northwest National Laboratory, Richland, WA 99352, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manag. 259, 660–684 (2010).

IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, Cambridge, 2014).

McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).

Adams, H. D. et al. Ecohydrological consequences of drought- and infestation- triggered tree die-off: insights and hypotheses. Ecohydrology 5, 145–159 (2012).

Anderegg, W. R. L., Kane, J. M. & Anderegg, L. D. L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30–36 (2013).

McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).

McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Change 6, 295–300 (2016).

Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Climate 27, 511–526 (2014).

Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl Acad. Sci. USA 111, 3280–3285 (2014).

McDowell, N. G. et al. Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytol. 200, 304–321 (2013).

Sala, A., Piper, F. & Hoch, G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol. 186, 274–281 (2010).

Hartmann, H., Ziegler, W., Kolle, O. & Trumbore, S. Thirst beats hunger – declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytol. 200, 340–349 (2013).

Quirk, J., McDowell, N. G., Leake, J. R., Hudson, P. J. & Beerling, D. J. Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmosphere carbon dioxide starvation. Am. J. Bot. 100, 582–591 (2013).

O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J. & Hector, A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat. Clim. Change 4, 710–714 (2014).

Sevanto, S., McDowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161 (2014).

Piper, F. I. & Fajardo, A. Carbon dynamics of Acer pseudoplatanus seedlings under drought and complete darkness. Tree Physiol. 36, 1400–1408 (2016).

McDowell, N. G. & Sevanto, S. The mechanisms of carbon starvation: how, when, or does it even occur at all? New Phytol. 186, 264–266 (2010).

Sala, A., Woodruff, D. R. & Meinzer, F. C. Carbon dynamics in trees: feast or famine? Tree Physiol. 32, 764–775 (2012).

Fatichi, S., Leuzinger, S. & Koerner, C. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol. 201, 1086–1095 (2014).

Hartmann, H. Carbon starvation during drought-induced tree mortality – are we chasing a myth? J. Plant Hydraul. 2, e005 (2015).

Körner, C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 25, 107–114 (2015).

Martínez-Vilalta, J. et al. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecol. Monogr. 86, 495–516 (2016).

Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

Skelton, R. P., West, A. G. & Dawson, T. E. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proc. Natl Acad. Sci. USA 112, 5744–5749 (2015).

Poorter, L. & Markesteijn, L. Seedling traits determine drought tolerance of tropical tree species. Biotropica 40, 321–331 (2008).

Meinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A. & Woodruff, D. R. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 23, 922–930 (2009).

McDowell, N. G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 155, 1051–1059 (2011).

Mitchell, P. J., O’Grady, A. P., Tissue, D. T., Worledge, D. & Pinkard, E. A. Co-ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies. Tree Physiol. 34, 443–458 (2014).

Mencuccini, M., Minunno, F., Salmon, Y., Martinez-Vilalta, J. & Holtta, T. Coordination of physiological traits involved in drought-induced mortality of woody plants. New Phytol. 208, 396–409 (2015).

O’Brien, M. J., Burslem, D., Caduff, A., Tay, J. & Hector, A. Contrasting nonstructural carbohydrate dynamics of tropical tree seedlings under water deficit and variability. New Phytol. 205, 1083–1094 (2015).

Landhäusser, S. M. & Lieffers, V. J. Defoliation increases risk of carbon starvation in root systems of mature aspen. Trees-Struct. Funct. 26, 653–661 (2012).

Brodribb, T. J., McAdam, S. A. M., Jordan, G. J. & Martins, S. C. V. Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proc. Natl Acad. Sci. USA 111, 14489–14493 (2014).

Anderegg, W. R. L. et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl Acad. Sci. USA 113, 5024–5029 (2016).

Brodribb, T. J. & Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584 (2009).

Anderegg, W. R. L. et al. Tree mortality predicted from drought-induced vascular damage. Nat. Geosci. 8, 367–371 (2015).

Sperry, J. S. & Love, D. M. What plant hydraulics can tell us about responses to climate-change droughts. New Phytol. 207, 14–27 (2015).

Zeppel, M. J. B. et al. Drought and resprouting plants. New Phytol. 206, 583–589 (2015).

Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees – from what we can measure to what we want to know. New Phytol. 211, 386–403 (2016).

Oliva, J., Stenlid, J. & Martinez-Vilalta, J. The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality. New Phytol. 203, 1028–1035 (2014).

Anderegg, W. R. L. et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 208, 674–683 (2015).

Johnson, D. M., McCulloh, K. A., Woodruff, D. R. & Meinzer, F. C. Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? Plant Sci. 195, 48–53 (2012).

Garcia-Forner, N. et al. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation. Plant Cell Environ. 39, 38–49 (2016).

Martínez-Vilalta, J. & Garcia-Forner, N. Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell Environ. 40, 962–976 (2016).

Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 129 (2015).

Adams, H. D. et al. Empirical and process-based approaches to climate-induced forest mortality models. Front. Plant Sci. 4, 438 (2013).

Mackay, D. S. et al. Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought. Water Resour. Res. 51, 6156–6176 (2015).

Sperry, J. S. et al. Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytol. 212, 577–589 (2016).

Sperry, J. S., Adler, F. R., Campbell, G. S. & Comstock, J. P. Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ. 21, 347–359 (1998).

Plaut, J. A. et al. Hydraulic limits preceding mortality in a piñon-juniper woodland under experimental drought. Plant Cell Environ. 35, 1601–1617 (2012).

Quentin, A. G. et al. Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol. 35, 1146–1165 (2015).

Germino, M. J. A carbohydrate quandary. Tree Physiol. 35, 1141–1145 (2015).

Wheeler, J. K. et al. Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant Cell Environ. 36, 1938–1949 (2013).

Nardini, A., Savi, T., Trifilò, P. & Lo Gullo, M. A. Drought Stress and the Recovery from Xylem Embolism in Woody Plants (Progress in Botany Series, Springer, Berlin, Heidelberg, 2017).

Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

Zanne, A. E. et al. Global Wood Density Database Dryad Digital Repository http://hdl.handle.net/10255/dryad.235 (2009).

Kattge, J. et al. TRY - a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

Niinemets, U. Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144, 35–47 (1999).

Niinemets, U. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82, 453–469 (2001).

Domec, J. C. & Gartner, B. L. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees-Struct. Funct. 15, 204–214 (2001).