A more tubulocentric view of diabetic kidney disease

Luigi Zeni1, Anthony G.W. Norden2, Giovanni Cancarini1, Robert J. Unwin2
1Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy
2UCL Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C, Johansen K, Kasiske B, Kutner N, Liu J, St Peter W, Guo H, Gustafson S, Heubner B, Lamb K, Li S, Li S, Peng Y, Qiu Y, Roberts T, Skeans M, Snyder J, Solid C, Thompson B, Wang C, Weinhandl E, Zaun D, Arko C, Chen SC, Daniels F, Ebben J, Frazier E, Hanzlik C, Johnson R, Sheets D, Wang X, Forrest B, Constantini E, Everson S, Eggers P, Agodoa L (2012) ‘United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis Off J Natl Kidney Found 59 (1 Suppl 1):A7, e1–420. doi: 10.1053/j.ajkd.2011.11.015

International Diabetes federation (2015) IDF diabetes. 7 ed.. International Diabetes Federation, Brussels. http://www.diabetesatlas.org .

Haneda M, Utsunomiya K, Koya D, Babazono T, Moriya T, Makino H, Kimura K, Suzuki Y, Wada T, Ogawa S, Inaba M, Kanno Y, Shigematsu T, Masakane I, Tsuchiya K, Honda K, Ichikawa K, Shide K, Joint Committee on Diabetes N, Japanese Diabetes S, Japanese Society of N, Japanese Society for Dialysis T, Japan Society of M, Clinical N (2014) Classification of Diabetic Nephropathy 2014. Nihon Jinzo Gakkai shi 56 (5):547–552

Caramori ML, Fioretto P, Mauer M (2003) Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes 52(4):1036–1040

Perkins BA, Ficociello LH, Roshan B, Warram JH, Krolewski AS (2010) In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int 77(1):57–64. doi: 10.1038/ki.2009.399

Viazzi F, Piscitelli P, Giorda C, Ceriello A, Genovese S, Russo GT, Fioretto P, Guida P, De Cosmo S, Pontremoli R, Group AM-AS (2017) Association of kidney disease measures with risk of renal function worsening in patients with hypertension and type 2 diabetes. J Diabetes Complicat 31(2):419–426. doi: 10.1016/j.jdiacomp.2016.10.030

Piscitelli P, Viazzi F, Fioretto P, Giorda C, Ceriello A, Genovese S, Russo G, Guida P, Pontremoli R, De De Cosmo S (2017) Predictors of chronic kidney disease in type 1 diabetes: a longitudinal study from the AMD Annals initiative. Sci Rep 7(1):3313. doi: 10.1038/s41598-017-03551-w

Martinez-Castelao A, Navarro-Gonzalez JF, Gorriz JL, de Alvaro F (2015) The concept and the epidemiology of diabetic nephropathy have changed in recent years. J Clin Med 4(6):1207–1216. doi: 10.3390/jcm4061207

Ruggenenti P, Remuzzi G (2006) Time to abandon microalbuminuria? Kidney Int 70(7):1214–1222. doi: 10.1038/sj.ki.5001729

Comper WD, Haraldsson B, Deen WM (2008) Resolved: normal glomeruli filter nephrotic levels of albumin. J Am Soc Nephrol JASN 19(3):427–432. doi: 10.1681/ASN.2007090997

Tonneijck L, Muskiet MH, Smits MM, van Bommel EJ, Heerspink HJ, van Raalte DH, Joles JA (2017) Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J Am Soc Nephrol JASN. doi: 10.1681/ASN.2016060666

Gibb DM, Tomlinson PA, Dalton NR, Turner C, Shah V, Barratt TM (1989) Renal tubular proteinuria and microalbuminuria in diabetic patients. Arch Dis Child 64(1):129–134

Tojo A, Onozato ML, Ha H, Kurihara H, Sakai T, Goto A, Fujita T, Endou H (2001) Reduced albumin reabsorption in the proximal tubule of early-stage diabetic rats. Histochem Cell Biol 116(3):269–276. doi: 10.1007/s004180100317

Russo LM, Sandoval RM, Campos SB, Molitoris BA, Comper WD, Brown D (2009) Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J Am Soc Nephrol JASN 20(3):489–494. doi: 10.1681/ASN.2008050503

Russo LM, Sandoval RM, McKee M, Osicka TM, Collins AB, Brown D, Molitoris BA, Comper WD (2007) The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int 71(6):504–513. doi: 10.1038/sj.ki.5002041

Osicka TM, Strong KJ, Nikolic-Paterson DJ, Atkins RC, Jerums G, Comper WD (2004) Renal processing of serum proteins in an albumin-deficient environment: an in vivo study of glomerulonephritis in the Nagase analbuminaemic rat. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Renal Assoc 19 (2):320–328

Norden AG, Lapsley M, Lee PJ, Pusey CD, Scheinman SJ, Tam FW, Thakker RV, Unwin RJ, Wrong O (2001) Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int 60(5):1885–1892. doi: 10.1046/j.1523-1755.2001.00016.x

Burling KA, Cutillas PR, Church D, Lapsley M, Norden AG (2012) Analysis of molecular forms of urine Retinol-Binding Protein in Fanconi Syndrome and design of an accurate immunoassay. Clinica chimica acta; Int J Clin Chem 413 (3–4):483–489. doi: 10.1016/j.cca.2011.11.007

Dickson LE, Wagner MC, Sandoval RM, Molitoris BA (2014) The proximal tubule and albuminuria: really! J Am Soc Nephrol JASN 25(3):443–453. doi: 10.1681/ASN.2013090950

Wagner MC, Campos-Bilderback SB, Chowdhury M, Flores B, Lai X, Myslinski J, Pandit S, Sandoval RM, Wean SE, Wei Y, Satlin LM, Wiggins RC, Witzmann FA, Molitoris BA (2016) Proximal tubules have the capacity to regulate uptake of albumin. J Am Soc Nephrol JASN 27(2):482–494. doi: 10.1681/ASN.2014111107

Ng DP, Tai BC, Tan E, Leong H, Nurbaya S, Lim XL, Chia KS, Wong CS, Lim WY, Holthofer H (2011) Nephrinuria associates with multiple renal traits in type 2 diabetes. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Renal Assoc 26 (8):2508–2514. doi: 10.1093/ndt/gfq738

Petrica L, Vlad A, Gluhovschi G, Gadalean F, Dumitrascu V, Gluhovschi C, Velciov S, Bob F, Vlad D, Popescu R, Milas O, Ursoniu S (2014) Proximal tubule dysfunction is associated with podocyte damage biomarkers nephrin and vascular endothelial growth factor in type 2 diabetes mellitus patients: a cross-sectional study. PloS One 9(11):e112538. doi: 10.1371/journal.pone.0112538

Thrailkill KM, Nimmo T, Bunn RC, Cockrell GE, Moreau CS, Mackintosh S, Edmondson RD, Fowlkes JL (2009) Microalbuminuria in type 1 diabetes is associated with enhanced excretion of the endocytic multiligand receptors megalin and cubilin. Diabetes Care 32(7):1266–1268. doi: 10.2337/dc09-0112

Tojo A, Kinugasa S (2012) Mechanisms of glomerular albumin filtration and tubular reabsorption. Int. J Nephrol 2012:481520. doi: 10.1155/2012/481520

Liu WJ, Shen TT, Chen RH, Wu HL, Wang YJ, Deng JK, Chen QH, Pan Q, Huang Fu CM, Tao JL, Liang D, Liu HF (2015) Autophagy-lysosome pathway in renal tubular epithelial cells is disrupted by advanced glycation end products in diabetic nephropathy. J Biol Chem 290(33):20499–20510. doi: 10.1074/jbc.M115.666354

Long YS, Zheng S, Kralik PM, Benz FW, Epstein PN (2016) Impaired albumin uptake and processing Promote albuminuria in OVE26 diabetic mice. J Diabetes Res 2016:8749417. doi: 10.1155/2016/8749417

Mori KP, Yokoi H, Kasahara M, Imamaki H, Ishii A, Kuwabara T, Koga K, Kato Y, Toda N, Ohno S, Kuwahara K, Endo T, Nakao K, Yanagita M, Mukoyama M, Mori K (2017) Increase of total nephron albumin filtration and reabsorption in diabetic nephropathy. J Am Soc Nephrol JASN 28(1):278–289. doi: 10.1681/ASN.2015101168

Remuzzi G, Ruggenenti P, Benigni A (1997) Understanding the nature of renal disease progression. Kidney Int 51(1):2–15

Nielsen R, et al (2013) Increased lysosomal proteolysis counteracts protein accumulation in the proximal tubule during focal segmental glomerulosclerosis. Kidney international 84(5):902–910

Guo JK, Marlier A, Shi H, Shan A, Ardito TA, Du ZP, Kashgarian M, Krause DS, Biemesderfer D, Cantley LG (2012) Increased tubular proliferation as an adaptive response to glomerular albuminuria. J Am Soc Nephrol JASN 23(3):429–437. doi: 10.1681/ASN.2011040396

Anders HJ, Davis JM, Thurau K (2016) Nephron protection in diabetic kidney disease. N Engl J Med 375(21):2096–2098. doi: 10.1056/NEJMcibr1608564

Fu WJ, Li BL, Wang SB, Chen ML, Deng RT, Ye CQ, Liu L, Fang AJ, Xiong SL, Wen S, Tang HH, Chen ZX, Huang ZH, Peng LF, Zheng L, Wang Q (2012) Changes of the tubular markers in type 2 diabetes mellitus with glomerular hyperfiltration. Diabetes Res Clin Pract 95(1):105–109. doi: 10.1016/j.diabres.2011.09.031

Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, Koepsell H, Thomson SC, Rieg T (2014) SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol 306 (2):F194-204. doi: 10.1152/ajprenal.00520.2013

Vallon V (2015) The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med 66:255–270. doi: 10.1146/annurev-med-051013-110046

Wanner C, Inzucchi SE, Zinman B (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375(18):1801–1802. doi: 10.1056/NEJMc1611290

Novikov A, Vallon V (2016) Sodium glucose cotransporter 2 inhibition in the diabetic kidney: an update. Curr Opin Nephrol Hypertens 25(1):50–58. doi: 10.1097/MNH.0000000000000187

van Bommel EJ, Muskiet MH, Tonneijck L, Kramer MH, Nieuwdorp M, van Raalte DH (2017) SGLT2 Inhibition in the Diabetic Kidney-From Mechanisms to Clinical Outcome. Clin J Am Soc Nephrol. doi: 10.2215/CJN.06080616

Song P, Onishi A, Koepsell H, Vallon V (2016) Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets 20(9):1109–1125. doi: 10.1517/14728222.2016.1168808

Rieg T, Masuda T, Gerasimova M, Mayoux E, Platt K, Powell DR, Thomson SC, Koepsell H, Vallon V (2014) Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol 306 (2):F188-193. doi: 10.1152/ajprenal.00518.2013

Abdul-Ghani MA, DeFronzo RA, Norton L (2013) Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30–50% of filtered glucose load in humans. Diabetes 62(10):3324–3328. doi: 10.2337/db13-0604

Powell DR, DaCosta CM, Gay J, Ding ZM, Smith M, Greer J, Doree D, Jeter-Jones S, Mseeh F, Rodriguez LA, Harris A, Buhring L, Platt KA, Vogel P, Brommage R, Shadoan MK, Sands AT, Zambrowicz B (2013) Improved glycemic control in mice lacking Sglt1 and Sglt2. Am J Physiol Endocrinol Metab 304(2):E117–E130. doi: 10.1152/ajpendo.00439.2012

Vallon V, Thomson SC (2017) Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 60(2):215–225. doi: 10.1007/s00125-016-4157-3

Marks J, Carvou NJ, Debnam ES, Srai SK, Unwin RJ (2003) Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane. J Physiol 553 (Pt 1):137–145. doi: 10.1113/jphysiol.2003.046268

Wright EM, Loo DD, Hirayama BA (2011) Biology of human sodium glucose transporters. Physiol Rev 91(2):733–794. doi: 10.1152/physrev.00055.2009

Wakisaka M (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375(18):1799–1800. doi: 10.1056/NEJMc1611290

Wakisaka M, Nagao T, Yoshinari M (2016) Sodium glucose cotransporter 2 (SGLT2) plays as a physiological glucose sensor and regulates cellular contractility in rat mesangial cells. PloS One 11(3):e0151585. doi: 10.1371/journal.pone.0151585

Ferrannini E, Mark M, Mayoux E (2016) CV protection in the EMPA-reg outcome Trial: a “thrifty substrate” hypothesis. Diabetes Care 39(7):1108–1114. doi: 10.2337/dc16-0330

Tang SC, Leung JC, Lai KN (2011) Diabetic tubulopathy: an emerging entity. Contrib Nephrol 170:124–134. doi: 10.1159/000325647

Gilbert RE, Cooper ME (1999) The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int 56(5):1627–1637. doi: 10.1046/j.1523-1755.1999.00721.x

Vallon V, Komers R (2011) Pathophysiology of the diabetic kidney. Compr Physiol 1(3):1175–1232. doi: 10.1002/cphy.c100049

Tang SC, Lai KN (2012) The pathogenic role of the renal proximal tubular cell in diabetic nephropathy. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Renal Assoc 27 (8):3049–3056. doi: 10.1093/ndt/gfs260

Bonventre JV (2012) Can we target tubular damage to prevent renal function decline in diabetes? Semin Nephrol 32(5):452–462. doi: 10.1016/j.semnephrol.2012.07.008

Tessari P (2015) Nitric oxide in the normal kidney and in patients with diabetic nephropathy. J Nephrol 28(3):257–268. doi: 10.1007/s40620-014-0136-2

Menzies RI, Tam FW, Unwin RJ, Bailey MA (2016) Purinergic signaling in kidney disease. Kidney Int. doi: 10.1016/j.kint.2016.08.029

Chen K, Zhang J, Zhang W, Zhang J, Yang J, Li K, He Y (2013) ATP-P2 × 4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol 45(5):932–943. doi: 10.1016/j.biocel.2013.02.009

Jenkin KA, Verty AN, McAinch AJ, Hryciw DH (2012) Endocannabinoids and the renal proximal tubule: an emerging role in diabetic nephropathy. Int J Biochem Cell Biol 44(11):2028–2031. doi: 10.1016/j.biocel.2012.07.008

Slyne J, Slattery C, McMorrow T, Ryan MP (2015) New developments concerning the proximal tubule in diabetic nephropathy: in vitro models and mechanisms. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Renal Assoc 30 Suppl 4:iv60–67. doi: 10.1093/ndt/gfv264

Pourghasem M, Shafi H, Babazadeh Z (2015) Histological changes of kidney in diabetic nephropathy. Caspian. J Intern Med 6(3):120–127

Brito PL, Fioretto P, Drummond K, Kim Y, Steffes MW, Basgen JM, Sisson-Ross S, Mauer M (1998) Proximal tubular basement membrane width in insulin-dependent diabetes mellitus. Kidney Int 53(3):754–761. doi: 10.1046/j.1523-1755.1998.00809.x

Fioretto P, Mauer M (2007) Histopathology of diabetic nephropathy. Semin Nephrol 27(2):195–207. doi: 10.1016/j.semnephrol.2007.01.012

Vallon V, Thomson SC (2012) Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol 74:351–375. doi: 10.1146/annurev-physiol-020911-153333

Najafian B, Kim Y, Crosson JT, Mauer M (2003) Atubular glomeruli and glomerulotubular junction abnormalities in diabetic nephropathy. J Am Soc Nephrol JASN 14(4):908–917

Viazzi F, Cappadona F, Pontremoli R (2016) Microalbuminuria in primary hypertension: a guide to optimal patient management? J Nephrol 29(6):747–753. doi: 10.1007/s40620-016-0335-0

Gluhovschi C, Gluhovschi G, Petrica L, Timar R, Velciov S, Ionita I, Kaycsa A, Timar B (2016) Urinary Biomarkers in the Assessment of Early Diabetic Nephropathy. J Diabetes Res 2016:4626125. doi: 10.1155/2016/4626125

Moresco RN, Sangoi MB, De Carvalho JA, Tatsch E, Bochi GV (2013) Diabetic nephropathy: traditional to proteomic markers. Clinica chimica acta; Int J Clin Chem 421:17–30. doi: 10.1016/j.cca.2013.02.019

Lee SY, Choi ME (2015) Urinary biomarkers for early diabetic nephropathy: beyond albuminuria. Pediatric nephrology 30(7):1063–1075. doi: 10.1007/s00467-014-2888-2

Bernard A, Amor AO, Viau C, Lauwerys R (1988) The renal uptake of proteins: a nonselective process in conscious rats. Kidney Int 34(2):175–185

Norden AG, Scheinman SJ, Deschodt-Lanckman MM, Lapsley M, Nortier JL, Thakker RV, Unwin RJ, Wrong O (2000) Tubular proteinuria defined by a study of Dent’s (CLCN5 mutation) and other tubular diseases. Kidney Int 57(1):240–249. doi: 10.1046/j.1523-1755.2000.00847.x

Tramonti G, Kanwar YS (2013) Review and discussion of tubular biomarkers in the diagnosis and management of diabetic nephropathy. Endocr 43(3):494–503. doi: 10.1007/s12020-012-9820-y

Mise K, Hoshino J, Ueno T, Hazue R, Hasegawa J, Sekine A, Sumida K, Hiramatsu R, Hasegawa E, Yamanouchi M, Hayami N, Suwabe T, Sawa N, Fujii T, Hara S, Ohashi K, Takaichi K, Ubara Y (2016) Prognostic value of tubulo-interstitial lesions, urinary N-acetyl-beta-d-glucosaminidase, and urinary beta2-microglobulin in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. Clin J Am Soc Nephrol 11(4):593–601. doi: 10.2215/CJN.04980515

Nielsen SE, Andersen S, Zdunek D, Hess G, Parving HH, Rossing P (2011) Tubular markers do not predict the decline in glomerular filtration rate in type 1 diabetic patients with overt nephropathy. Kidney Int 79(10):1113–1118. doi: 10.1038/ki.2010.554

Mao J, Chen S, Na Z, Xhang Y, Huang Y, Li Y (1996) Frozen storage of urine samples before ELISA measurement of retinol-binding protein. Clin Chem 42(3):466–467

Conway BR, Manoharan D, Manoharan D, Jenks S, Dear JW, McLachlan S, Strachan MW, Price JF (2012) Measuring urinary tubular biomarkers in type 2 diabetes does not add prognostic value beyond established risk factors. Kidney Int 82(7):812–818. doi: 10.1038/ki.2012.218

Kern EF, Erhard P, Sun W, Genuth S, Weiss MF (2010) Early urinary markers of diabetic kidney disease: a nested case-control study from the diabetes control and complications trial (DCCT). Am J Kidney Dis Off J Natl Kidney Found 55(5):824–834. doi: 10.1053/j.ajkd.2009.11.009

Fu WJ, Xiong SL, Fang YG, Wen S, Chen ML, Deng RT, Zheng L, Wang SB, Pen LF, Wang Q (2012) Urinary tubular biomarkers in short-term type 2 diabetes mellitus patients: a cross-sectional study. Endocr 41(1):82–88. doi: 10.1007/s12020-011-9509-7

Soggiu A, Piras C, Bonizzi L, Hussein HA, Pisanu S, Roncada P (2012) A discovery-phase urine proteomics investigation in type 1 diabetes. Acta Diabetol 49(6):453–464. doi: 10.1007/s00592-012-0407-0

Panduru NM, Forsblom C, Saraheimo M, Thorn L, Bierhaus A, Humpert PM, Groop PH, FinnDiane Study G (2013) Urinary liver-type fatty acid-binding protein and progression of diabetic nephropathy in type 1 diabetes. Diabetes Care 36(7):2077–2083. doi: 10.2337/dc12-1868

Kim SS, Song SH, Kim IJ, Jeon YK, Kim BH, Kwak IS, Lee EK, Kim YK (2013) Urinary cystatin C and tubular proteinuria predict progression of diabetic nephropathy. Diabetes Care 36(3):656–661. doi: 10.2337/dc12-0849

Zurbig P, Jerums G, Hovind P, Macisaac RJ, Mischak H, Nielsen SE, Panagiotopoulos S, Persson F, Rossing P (2012) Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes 61(12):3304–3313. doi: 10.2337/db12-0348

Papale M, Di Paolo S, Vocino G, Rocchetti MT, Gesualdo L (2014) Proteomics and diabetic nephropathy: what have we learned from a decade of clinical proteomics studies? J Nephrol 27(3):221–228. doi: 10.1007/s40620-014-0044-5

Saikumar J, Ramachandran K, Vaidya VS (2014) Noninvasive micromarkers. Clin Chem 60(9):1158–1173. doi: 10.1373/clinchem.2013.216044

Simpson K, Wonnacott A, Fraser DJ, Bowen T (2016) MicroRNAs in diabetic nephropathy: from biomarkers to therapy. Curr Diab Rep 16(3):35. doi: 10.1007/s11892-016-0724-8

Argyropoulos C, Wang K, Bernardo J, Ellis D, Orchard T, Galas D, Johnson JP (2015) Urinary MicroRNA profiling predicts the development of microalbuminuria in patients with type 1 diabetes. J Clin Med 4(7):1498–1517. doi: 10.3390/jcm4071498

Delić D, Eisele C, Schmid R, Baum P, Wiech F, Gerl M, Zimdahl H, Pullen SS, Urquhart R (2016) Urinary exosomal miRNA signature in type II diabetic nephropathy patients. PloS One 11(3):e0150154. doi: 10.1371/journal.pone.0150154