A monolithic hydro/organo macro copolymer actuator synthesized via interfacial copolymerization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Forterre, Y., Skotheim, J. M., Dumais, J. & Mahadevan, L. How the Venus flytrap snaps. Nature 433, 421–425 (2005).
Elbaum, R., Zaltzman, L., Burgert, I. & Fratzl, P. The role of wheat awns in the seed dispersal unit. Science 316, 884–886 (2007).
Armon, S., Efrati, E., Kupferman, R. & Sharon, E. Geometry and mechanics in the opening of chiral seed pods. Science 333, 1726–1730 (2011).
Burgert, I. & Fratzl, P. Actuation systems in plants as prototypes for bioinspired devices. Phil. Trans. R. Soc. A 367, 1541–1557 (2009).
Harrington, M. J., Razghandi, K., Ditsch, F., Guiducci, L., Rueggeberg, M., Dunlop, J. W. C., Fratzl, P., Neinhuis, C. & Burgert, I. Origami-like unfolding of hydro-actuated ice plant seed capsules. Nat. Commun. 2, 337 (2011).
Osada, Y., Okuzaki, H. & Hori, H. A polymer gel with electrically driven motility. Nature 355, 242–244 (1992).
Pei, Q. & Inganläs, O. Conjugated polymers and the bending cantilever method: electrical muscles and smart devices. Adv. Mater. 4, 277–278 (1992).
Otero, T. F. & Sansieña, J. M. Soft and wet conducting polymers for artificial muscles. Adv. Mater. 10, 491–494 (1998).
Takashima, Y., Hatanaka, S., Otsubo, M., Nakahata, M., Kakuta, T., Hashidzume, A., Yamaguchi, H. & Harada, A. Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nat. Commun. 3, 1270 (2012).
Chun, K.-Y., Kim, S. H., Shin, M. K., Kwon, C. H., Park, J., Kim, Y. T., Spinks, G. M., Lima, M. D., Haines, C. S., Baughman, R. H. & Kim, S. J. Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk. Nat. Commun. 5, 3322 (2014).
Haines, C. S., Lima, M. D., Li, N., Spinks, G. M., Foroughi, J., Madden, J. D. W., Kim, S. H., Fang, S., Jung de Andrade, M., Göktepe, F., Göktepe, Ö., Mirvakili, S. M., Naficy, S., Lepró, X., Oh, J., Kozlov, M. E., Kim, S. J., Xu, X., Swedlove, B. J., Wallace, G. G. & Baughman, R. H. Artificial muscles from fishing line and sewing thread. Science 343, 868–872 (2014).
Iamsaard, S., Aßhoff, S. J., Matt, B., Kudernac, T., CornelissenJeroen, J. L. M., Fletcher, S. P. & Katsonis, N. Conversion of light into macroscopic helical motion. Nat. Chem. 6, 229–235 (2014).
Smela, E., Inganäs, O. & Lundström, I. Controlled folding of micrometer-size structures. Science 268, 1735–1738 (1995).
Jager, E. W. H., Inganäs, O. & Lundström, I. Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science 288, 2335–2338 (2000).
Maeda, S., Hara, Y., Sakai, T., Yoshida, R. & Hashimoto, S. Self-walking gel. Adv. Mater. 19, 3480–3484 (2007).
Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X. & Whitesides, G. M. Soft robotics for chemists. Angew. Chem. Int. Ed. 50, 1890–1895 (2011).
Palleau, E., Morales, D., Dickey, M. D. & Velev, O. D. Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting. Nat. Commun. 4, 2257 (2013).
Magdanz, V., Stoychev, G., Ionov, L., Sanchez, S. & Schmidt, O. Stimuli-responsive microjets with reconfigurable shape. Angew. Chem. Int. Ed. 126, 2711–2715 (2014).
Zhang, L., Liang, H., Jacob, J. & Naumov, P. Photogated humidity-driven motility. Nat. Commun. 6, 7429 (2015).
Klein, Y., Efrati, E. & Sharon, E. Shaping of elastic sheets by prescription of non-euclidean metrics. Science 315, 1116–1120 (2007).
Kim, J., Hanna, J. A., Byun, M., Santangelo, C. D. & Hayward, R. C. Designing responsive buckled surfaces by halftone gel lithography. Science 335, 1201–1205 (2012).
Hu, Z., Zhang, X. & Li, Y. Synthesis and application of modulated polymer gels. Science 269, 525–527 (1995).
Erb, R. M., Sander, J. S., Grisch, R. & Studart, A. R. Self-shaping composites with programmable bioinspired microstructures. Nat. Commun. 4, 1712 (2013).
Zhang, X., Yu, Z., Wang, C., Zarrouk, D., Seo, J.-W. T., Cheng, J. C., Buchan, A. D., Takei, K., Zhao, Y., Ager, J. W., Zhang, J., Hettick, M., Hersam, M. C., Pisano, A. P., Fearing, R. S. & Javey, A. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 5, 2983 (2014).
Wu, Z. L., Moshe, M., Greener, J., Therien-Aubin, H., Nie, Z., Sharon, E. & Kumacheva, E. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. 4, 1586 (2013).
Yu, Y., Nakano, M. & Ikeda, T. Photomechanics: directed bending of a polymer film by light. Nature 425, 145–145 (2003).
Morin, S. A., Shepherd, R. F., Kwok, S. W., Stokes, A. A., Nemiroski, A. & Whitesides, G. M. Camouflage and display for soft machines. Science 337, 828–832 (2012).
Stoychev, G., Zakharchenko, S., Turcaud, S., Dunlop, J. W. C. & Ionov, L. Shape-programmed folding of stimuli-responsive polymer bilayers. ACS Nano 6, 3925–3934 (2012).
Stoychev, G., Turcaud, S., Dunlop, J. W. C. & Ionov, L. Hierarchical multi-step folding of polymer bilayers. Adv. Funct. Mater. 23, 2295–2300 (2013).
Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).
Stoychev, G., Puretskiy, N. & Ionov, L. Self-folding all-polymer thermoresponsive microcapsules. Soft Matter 7, 3277–3279 (2011).
Ma, M., Guo, L., Anderson, D. G. & Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339, 186–189 (2013).
Baughman, R. H., Cui, C., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., Spinks, G. M., Wallace, G. G., Mazzoldi, A., De Rossi, D., Rinzler, A. G., Jaschinski, O., Roth, S. & Kertesz, M. Carbon nanotube actuators. Science 284, 1340–1344 (1999).
Forster, S. & Antonietti, M. Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv. Mater. 10, 195–217 (1998).
Jiang, L., Wang, R., Yang, B., Li, T. J., Tryk, D. A., Fujishima, A., Hashimoto, K. & Zhu, D. B. Binary cooperative complementary nanoscale interfacial materials. Pure Appl. Chem. 72, 73–81 (2000).
Su, B., Guo, W. & Jiang, L. Learning from nature: binary cooperative complementary nanomaterials. Small 11, 1072–1096 (2015).
Cornelissen, J. J. L. M., Fischer, M., Sommerdijk, N. A. J. M. & Nolte, R. J. M. Helical superstructures from charged poly(styrene)-poly(isocyanodipeptide) block copolymers. Science 280, 1427–1430 (1998).
Letchford, K. & Burt, H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm. 65, 259–269 (2007).
Blanazs, A., Madsen, J., Battaglia, G., Ryan, A. J. & Armes, S. P. Mechanistic insights for block copolymer morphologies: how do worms form vesicles? J. Am. Chem. Soc. 133, 16581–16587 (2011).
Velonia, K., Rowan, A. E. & Nolte, R. J. M. Lipase polystyrene giant amphiphiles. J. Am. Chem. Soc. 124, 4224–4225 (2002).
Discher, B. M., Won, Y. Y., Ege, D. S., Lee, J. C. M., Bates, F. S., Discher, D. E. & Hammer, D. A. Polymersomes: tough vesicles made from diblock copolymers. Science 284, 1143–1146 (1999).
Shimizu, T., Masuda, M. & Minamikawa, H. Supramolecular nanotube architectures based on amphiphilic molecules. Chem. Rev. 105, 1401–1444 (2005).
La, Y., Park, C., Shin, T. J., Joo, S. H., Kang, S. & Kim, K. T. Colloidal inverse bicontinuous cubic membranes of block copolymers with tunable surface functional groups. Nat. Chem. 6, 534–541 (2014).
Ohmine, I. & Tanaka, T. Salt effects on the phase transition of ionic gels. J. Chem. Phys. 77, 5725–5729 (1982).
Huther, A., Schafer, B., Xu, X. & Maurer, G. Phase equilibria of hydrogel systems. Phys. Chem. Chem. Phys. 4, 835–844 (2002).
Ma, C., Li, T., Zhao, Q., Yang, X., Wu, J., Luo, Y. & Xie, T. Supramolecular lego assembly towards three-dimensional multi-responsive hydrogels. Adv. Mater. 26, 5665–5669 (2014).