A monocentric centerline extraction method for ring-like blood vessels

Medical & Biological Engineering & Computing - Tập 56 Số 4 - Trang 695-707 - 2018
Fengjun Zhao1, Feifei Sun1, Yi Hou1, Yanrong Chen1, Dongmei Chen2, Xin Cao1, Huangjian Yi1, Bin Wang1, Xiaowei He3, Jimin Liang4
1School of Information Sciences and Technology, Northwest University, Xi’an, China
2College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, China
3School of Information Sciences and Technology, Northwest University, Xi’an, Shaanxi, 710069, China
4Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Antiga L (2002) Patient-specific modeling of geometry and blood flow in large arteries. PhD Dissertation. Politecnico di Milano

Aylward S, Pizer S, Eberly D, Bullitt E (1996) Intensity ridge and widths for tubular object segmentation and description. In: Anon (ed) Proceedings of the workship on mathematical methods in biomedical image analysis. IEEE, San Francisco, CA, pp 131–138

Bian Z, Tan W, Yang J, Liu J, Zhao D (2014) Accurate airway centerline extraction based on topological thinning using graph-theoretic analysis. Biomed Mater Eng 24:3239–3249

Bitter I, Kaufman AE, Sato M (2001) Penalized-distance volumetric skeleton algorithm. IEEE Trans Vis Comput Graph 7:195–206

Bullitt E, Zeng DL, Gerig G, Aylward S, Joshi S, Smith JK, Lin WL, Ewend MG (2005) Vessel tortuosity and brain tumor malignancy: a blinded study. Acad Radiol 12:1232–1240. https://doi.org/10.1016/j.acra.2005.05.027

A C, D B GS (1985) A width-independent fast thinning algorithm. IEEE Trans Pattern Anal Mach Intell 7:463–474

Ćurić G (2014) Function of circle of Willis. J Cereb Blood Flow Metab 34:578–584

Ding M, Tong R, Liao SH, Dong J (2009) An extension to 3D topological thinning method based on LUT for colon centerline extraction. Comput Methods Prog in Biomed 94:39–47

Elattar MA, Wiegerinck EM, Planken RN, Vanbavel E, van Assen HC, Baan J Jr, Marquering HA (2014) Automatic segmentation of the aortic root in CT angiography of candidate patients for transcatheter aortic valve implantation. Med Biol Eng Comput 52:611–618. https://doi.org/10.1007/s11517-014-1165-7

Gray-Edwards HL, Salibi N, Josephson EM, Hudson JA, Cox NR, Randle AN, McCurdy VJ, Bradbury AM, Wilson DU, Beyers RJ et al (2014) High resolution MRI anatomy of the cat brain at 3 Tesla. J Neurosci Methods 227:10–17. https://doi.org/10.1016/j.jneumeth.2014.01.035

Hamarneh G, Jassi P (2010) VascuSynth: simulating vascular trees for generating volumetric image data with ground-truth segmentation and tree analysis. Comput Med Imaging Graph 34:605–616. https://doi.org/10.1016/j.compmedimag.2010.06.002

Hassouna MS, Farag AA (2005) Robust centerline extraction framework using level sets. IEEE Comput Soc Conf Comput Vis Pattern Recog 1: 458–465

Heinzer S, Krucker T, Stampanoni M, Abela R, Meyer EP, Schuler A, Schneider P, Mueller R (2006) Hierarchical microimaging for multiscale analysis of large vascular networks. NeuroImage 32:626–636. https://doi.org/10.1016/j.neuroimage.2006.03.043

Heinzer S, Kuhn G, Krucker T, Meyer E, Ulmann-Schuler A, Stampanoni M, Gassmann M, Marti HH, Mueller R, Vogel J (2008) Novel three-dimensional analysis tool for vascular trees indicates complete micro-networks, not single capillaries, as the angiogenic endpoint in mice overexpressing human VEGF(165) in the brain. NeuroImage 39:1549–1558. https://doi.org/10.1016/j.neuroimage.2007.10.054

Hernández-Hoyos M, Orkisz M, Puech P, Mansard-Desbleds C, Douek P, Magnin IE (2002) Computer-assisted analysis of three-dimensional MR angiograms. Radiographics Rev Publ Radiol Soc North Am Inc 22:421–436

Huang A, Liu HM, Liu HM, Lee CW, Yang CY, Tsang YM, Tsang YM (2009) On concise 3-D simple point characterizations: a marching cubes paradigm. IEEE Trans Med Imaging 28:43–51

Jasika N, Alispahic N, Elma A, Ilvana K, Elma L, Nosovic N (2012) Dijkstra’s shortest path algorithm serial and parallel execution performance analysis. 2012 Proc 35th Int Convention MIPRO 2012: 1811-1815

Jin D, Iyer KS, Chen C, Hoffman EA, Saha PK (2016) A robust and efficient curve skeletonization algorithm for tree-like objects using minimum cost paths. Pattern Recognition Letters 76:32–40. https://doi.org/10.1016/j.patrec.2015.04.002

Kang DG, Suh DC, Ra JB (2009) Three-dimensional blood vessel quantification via centerline deformation. IEEE Trans Med Imaging 28:405–414

Krissian K, Malandain G, Ayache N (1998) Model based multiscale detection and reconstruction of 3D vessels. HAL - INRIA: RR-3442

Krissian K, Malandain G, Ayache N (1998) Model based multiscale detection and reconstruction of 3D vessels. INRIA, City

Kumar RP (2013) Study on liver blood vessel movement during breathing cycle. Colour Vis Comput Symp 8255:1–5

Kumar RP, Albregtsen F, Reimers M, Edwin B, Lango T, Elle OJ (2015) Three-dimensional blood vessel segmentation and centerline extraction based on two-dimensional cross-section analysis. Ann Biomed Eng 43:1223–1234. https://doi.org/10.1007/s10439-014-1184-4

Lahousse L, Tiemeier H, Ikram MA, Brusselle GG (2015) Chronic obstructive pulmonary disease and cerebrovascular disease: a comprehensive review. Respir Med 109:1371–1380. https://doi.org/10.1016/j.rmed.2015.07.014

Lam L, Lee SW, Suen CY (1992) Thinning methodologies—a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 14:869–885

Lee J, Kim G, Lee H, Shin BS, Shin YG (2008) Fast path planning in virtual colonoscopy. Comput Biol Med 38:1012–1023

Lee TC, Kashyap RL, Chu CN (1994) Building skeleton models via 3-D medial surface/axis thinning algorithms. Cvgip Graph Model Image Process 56:462–478

Li H, Yezzi A (2007) Vessels as 4-D curves: global minimal 4-D paths to extract 3-D tubular surfaces and centerlines. IEEE Trans Med Imaging 26:1213–1223. https://doi.org/10.1109/tmi.2007.903696

Mendonça AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 25:1200–1213

Mortier P, De Beule M, Van Loo D, Masschaele B, Verdonck P, Verhegghe B (2008) Automated generation of a finite element stent model. Med Biol Eng Comput 46:1169–1173. https://doi.org/10.1007/s11517-008-0410-3

Pagidipati NJ, Gaziano TA (2013) Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation 127:749–756. https://doi.org/10.1161/circulationaha.112.128413

A SR, B E (2002) Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans Med Imaging 21:61–75

Sadleir R, Whelan PF (2005) Colon centerline calculation for CT colonography using optimised 3D topological thinning. Comput Med Imaging Graph 29:251–258

Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL (2000) MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke 31:1672–1678

Tillich M, Hill BB, Paik DS, Petz K, Napel S, Zarins CK, Rubin GD (2001) Prediction of aortoiliac stent-graft length: comparison of measurement methods. Radiology 220:475–483

Wan M, Liang Z, Ke Q, Hong L, Bitter I, Kaufman AE (2002) Automatic centerline extraction for virtual colonoscopy. IEEE Trans Med Imaging 21:1450–1460

Xin L, Gao Z, Xiong H, Ghista D, Ren L, Zhang H, Wu W, Huang W, Hau WK (2016) Three-dimensional hemodynamics analysis of the circle of Willis in the patient-specific nonintegral arterial structures. Biomech Model Mechanobiol 15:1–18

XuJ, Feng D, Wu J, Cui Z (2009) Robust centerline extraction for tree-like blood vessels based on the region growing algorithm and level-set method. 2009 Sixth Int Conf Fuzzy Syst Knowl Discov 4: 586–591 Doi https://doi.org/10.1109/FSKD.2009.916

Yang G, Kitslaar P, Frenay M, Broersen A, Boogers MJ, Bax JJ, Reiber JHC, Dijkstra J (2012) Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography. Int J Cardiovasc Imaging 28:921–933

Zhao F, Liang J, Chen D, Wang C, Yang X, Chen X, Cao F (2015) Automatic segmentation method for bone and blood vessel in murine hindlimb. Med Phys 42:4043–4054. https://doi.org/10.1118/1.4922200

Zhao F, Liang J, Chen X, Liu J, Chen D, Yang X, Tian J (2016) Quantitative analysis of vascular parameters for amicro-CT imaging of vascular networks with multi-resolution. Med Biol Eng Comput 54:511–524. https://doi.org/10.1007/s11517-015-1337-0

Zhao F, Liu J, Qu X, Xu X, Chen X, Yang X, Cao F, Liang J, Tian J (2014) In vivo quantitative evaluation of vascular parameters for angiogenesis based on sparse principal component analysis and aggregated boosted trees. Phys Med Biol 59:7777–7791