A molecular informed poroelastic model for organic-rich, naturally occurring porous geocomposites

Journal of the Mechanics and Physics of Solids - Tập 88 - Trang 186-203 - 2016
Siavash Monfared1, Franz-Josef Ulm1
1Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

Tài liệu tham khảo

Abedi, S., Slim, M., Hofmann, R., Bryndzia, T., Ulm, F.-J., 2015. Nano-chemomechanical signature of organic-rich shales: a coupled indentation-edx analysis. Acta Geotech., submitted for publication. Abousleiman, Y., Tran, M., Hoang, S., Bobko, C., Ortega, J., Ulm, F.-J., 2007. Geomechanics field and lab characterization of Woodford shale: The next gas play. In: Proceedings, Society of Petroleum Engineers Annual Technical Conference and Exhibition SPE 110120. Ahmadov, R., 2011. Micro-textural, elastic and transport properties of source rocks. Doctor of philosophy. Stanford University. Aleksandrov, 1961, Elastic properties of rock-forming minerals. ii. Layered silicates, Bull. USSR. Acad. Sci. Geophys. Ser., 9, 1165 Bangham, D., Franklin, R., 1946. Thermal expansion of coals and carbonised coals. Proc. R. Soc. A 27, 147–160. Beneviste, 1987, A new approach to the application of Mori–Tanaka's theory in composite materials, Mech. Mater., 6, 147, 10.1016/0167-6636(87)90005-6 Bobko, C., 2008. Assessing the mechanical microstructure of shale by nanoindentation: the link between mineral composition and mechanical properties. Doctor of philosophy. Massachusetts Institute of Technology. Bousige, C., Ghimbeu, C., Vix, C., Pomerantz, A., Suleimenova, A., Vaughan, G., Garbarino, G., Feygenson, M., Wildgruber, C., Ulm, F.-J., Pellenq, J.-M., Cosane, B., 2015. Realistic molecular model of mature and immature kerogens in organic-rich shales. Nat. Mater, in press. Budiansky, 1965, On the elastic moduli of some heterogeneous materials, J. Mech. Phys. Solids, 13, 223, 10.1016/0022-5096(65)90011-6 Curtis, M., Sondergeld, C., Rai, C., 2013. Relationship between organic shale microstructure and hydrocarbon generation, SPE164540. Delafargue, 2013, Explicit approximation of the indentation modulus of elasticity orthotropic solids for conical indenters, Int. J. Solids Struct., 41, 7351, 10.1016/j.ijsolstr.2004.06.019 Dormieux, 2006 Eshelby, J., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A 241, 376–396. Gibbons, 2003 Hantal, 2014, Atomic-scale modeling of elastic and failure properties of clays, Mol. Phys.: An Int. J. Interface Between Chem. Phys., 112, 1294, 10.1080/00268976.2014.897393 Hellmich, 2005, Drained and undrained poroelastic properties of healthy and pathological bone, Transp. Porous Media, 58, 243, 10.1007/s11242-004-6298-y Hershey, 1954, The elasticity of an isotropic aggregate of anisotropic cubic crystals, J. Appl. Mech., 21, 226 Hill, 1965, A self-consistent mechanics of composite materials, J. Mech. Phys. Solids, 13, 213, 10.1016/0022-5096(65)90010-4 Hornby, 1994, Anisotropic effective-medium modeling of the elastic properties of shales, Geophysics, 59, 1570, 10.1190/1.1443546 Houtari, T., Kukkonen, I., 2004. Thermal expansion of rocks: literature survey and estimation of thermal expansion coefficient for olkiluoto mica gneiss. Working report. Geological Survey of Finland. Katahara, K., 1996. Clay minerals elastic properties. In: Proceedings of the 66th SEG Annual Meeting, Expanded Technical Program Abstracts, pp. 1691–1694. Khadeeva, 2014, Rock-physics model for unconventional shales, The Leading Edge, 33, 221, 10.1190/tle33030318.1 Kroner, 1958, Berechnung derelastischen konstanten des vielkristalls aus den konstanten des einkristalls, Z. Phys. A Hadrons Nucl., 151, 504 Malthe-Srenssen, 2006, Fracture patterns generated by diffusion controlled volume changing reactions, Phys. Rev. Lett., 96 Mavko, 2003 McKinstry, 1965, Thermal expansion of clay minerals, Am. Mineral., 50 Mori, 1973, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21, 571, 10.1016/0001-6160(73)90064-3 Ortega, 2009, The effect of particle shape and grain-scale properties of shale: a micromechanics approach, Int. J. Numer. Anal. Methods Geomech., 34, 1124 Ortega, 2009, The nanogranular acoustic signature of shale, Geophysics, 74, 3, 10.1190/1.3097887 Pierson, 1993 Prasad, 2009, Acoustic signatures, impedance microstructure, textural scales, and anisotropy of kerogen-rich shale, 533 Prioul, 2007, Forward modeling of fracture-induced sonic anisotropy using a combination of borehole image and sonic logs, Geophysics, 72, E135, 10.1190/1.2734546 Qu, 1993, The effect of slightly weakened interfaces on the overall elastic properties of composite materials, Mech. Mater., 14, 269, 10.1016/0167-6636(93)90082-3 Qu, 1993, Eshelby tensor for an elastic inclusion with slightly weakened interface, J. Appl. Mech., 60, 1048, 10.1115/1.2900974 Radjai, 1996, Force distribution in dense two-dimensional granular systems, Phys. Rev. Lett., 77 Romero, 2012, Organic geochemistry of the Woodford shale, Southwestern Oklahoma: How variable can shale be?, AAPG Bull., 96, 493, 10.1306/08101110194 Sayers, 2013, The effect of kerogen on the elastic anisotropy of organic-rich shales, Geophysics, 78, D65, 10.1190/geo2012-0309.1 Seo, 1999, Stress–strain response of rock-forming minerals by md simulations, Mater. Sci. Res. Int., 5, 13 Sorrell, 1974, Thermal expansion and the high-low transformation in quartz. ii. Dilatometric studies, J. Appl. Cryst., 7 Thiercelin, M., Plumb, R., 1994. Core-based prediction of lithologic stress contrasts in East Texas formations. SPE Formation Evaluation, December. Thomsen, 1986, Weak elastic anisotropy, Geophysics, 51, 195, 10.1190/1.1442051 Ulm, 2006, The nanogranular nature of shale, Acta Geotech., 1, 77, 10.1007/s11440-006-0009-5 Ulm F.-J., Constantinides G., Delafargue A., Abousleiman Y., Ewy R., Duranti L. and McCarty D., Material invariant poromechanics properties of shales 37 (265), 2004, 43–58, Proceedings of the 3rd Biot Conference on Poromechanics, 24-27 May 2005, Norman, Oklahoma, USA. Edited by Franz-Josef Ulm, Younane N. Abousleiman, and Alexander H.-D. Cheng, 10.1201/NOE0415380416.ch96 Vaughan, 1986, Elasticity of muscovite and its relationship to crystal structure, J. Geophys. Res., 91, 4657, 10.1029/JB091iB05p04657 Vernik, 1993, Microcrack-induced versus intrinsic elastic anisotropy in mature hc-source shales, Geophysics, 58, 1703, 10.1190/1.1443385 Vernik, 2010, Modeling elastic properties of siliciclastic rocks, Geophysics, 75, E171, 10.1190/1.3494031 Vernik, 1996, Elastic anisotropy of source rocks: implications for hydrocarbon generation and primary migration, AAPG Bull., 80, 531 Vernik, 1992, Ultrasonic velocity and anisotropy of hydrocarbon source rocks, Geophysics, 57, 727, 10.1190/1.1443286 Vernik, 1997, Velocity anisotropy in shales, Geophysics, 62, 521, 10.1190/1.1444162 Yakobson, 1991, Morphology and rate of fracture in chemical decomposition of solids, Phys. Rev. Lett., 67 Zaoui, 2002, Continuum micromechanics: a survey, J. Eng. Mech., 128, 808, 10.1061/(ASCE)0733-9399(2002)128:8(808) Zhang, 2007, A molecular dynamics study of natural organic matter: 1. Lignin, kerogen and soot, Org. Chem., 40, 1132 Zhang, 2007, Thermal analytical investigation of biopolymers and humic-and carbonaceous-based soil and sediment organic matter, Environ. Sci. Technol., 41, 4888, 10.1021/es063106o