A modified normalized model for predicting effective soil thermal conductivity

Hailong He1,2, Ying Zhao2, Miles Dyck3, Bing Cheng4,5, Huijun Jin1, Jialong Lv2, Jinxin Wang2
1State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
2Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China (Ministry of Agriculture) and College of Natural Resources and Environment, Northwest A&F University, Yangling, China
3Department of Renewable Resources, University of Alberta, Edmonton, Canada
4College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, China
5Department of Soil Science, University of Saskatchewan, Saskatoon, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Balland V, Arp PA (2005) Modeling soil thermal conductivities over a wide range of conditions. J Environ Eng Sci 4(6):549–558. doi: 10.1139/S05-007

Barry-Macaulay D, Bouazza A, Wang B, Singh RM (2015) Evaluation of soil thermal conductivity models. Can Geotech J 52(11):1892–1900. doi: 10.1139/cgj-2014-0518

Batjes NH (1996) Development of a world data set of soil water retention properties using pedotransfer rules. Geoderma 71(1–2):31–52. doi: 10.1016/0016-7061(95)00089-5

Becker BR, Misra A, Fricke BA (1992) Development of correlations for soil thermal conductivity. Int Commun Heat Mass Transf 19(1):59–68. doi: 10.1016/0735-1933(92)90064-O

Bristow KL, Horton R, Kluitenberg GJ (1994) Measurement of soil thermal properties with a dual-probe heat-pulse technique. Soil Sci Soc Am J 58(5):1288–1294. doi: 10.2136/sssaj1994.03615995005800050002x

Brutsaert W (1982) Evaporation into the atmosphere: theory, history and applications, vol 1. Springer, Berlin

Campbell GS (1985) Soil physics with BASIC: transport models for soil–plant systems. Developments in soil science, vol 14, 3rd edn. Elsevier, New York

Campbell GS, Calissendorff C, Williams JH (1991) Probe for measuring soil specific heat using a heat-pulse method. Soil Sci Soc Am J 55(1):291–293. doi: 10.2136/sssaj1991.03615995005500010052x

Chen SX (2008) Thermal conductivity of sands. Heat Mass Transf 44(10):1241–1246. doi: 10.1007/s00231-007-0357-1

Côté J, Konrad J-M (2005) A generalized thermal conductivity model for soils and construction materials. Can Geotech J 42(2):443–458. doi: 10.1139/t04-106

de Vries DA (1963) Thermal properties of soil. In: van Dijk WR (ed) Physics of plant environment. North Holland Publishing, Amsterdam, pp 210–235

Dong Y, Pamukcu S (2015) Thermal and electrical conduction in unsaturated sand controlled by surface wettability. Acta Geotech 10(6):821–829. doi: 10.1007/s11440-014-0317-0

Dong Y, McCartney J, Lu N (2015) Critical review of thermal conductivity models for unsaturated soils. Geotech Geol Eng 33(2):207–221. doi: 10.1007/s10706-015-9843-2

Ewen J, Thomas HR (1987) The thermal probe—a new method and its use on an unsaturated sand. Géotechnique 37(1):91–105. doi: 10.1680/geot.1987.37.1.91

Farouki OT (1981) Thermal properties of soils, vol 81-1. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover

Farouki OT (1982) Evaluation of methods for calculating soil thermal conductivity. DTIC Document

Haigh SK (2012) Thermal conductivity of sands. Géotechnique 62(7):617–625. doi: 10.1680/geot.11.P.043

He H, Dyck M (2013) Application of multiphase dielectric mixing models for understanding the effective dielectric permittivity of frozen soils. Vadose Zone J. doi: 10.2136/vzj2012.0060

He H, Dyck M, Wang J, Lv J (2015) Evaluation of TDR for quantifying heat-pulse-method-induced ice melting in frozen soils. Soil Sci Soc Am J 79(5):1275–1288. doi: 10.2136/sssaj2014.12.0499

Johansen O (1975) Varmeledningsevne av jordarter (Thermal conductivity of soils). University of Trondheim, Trondheim. US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, N.H. CRREL Draft English Translation 637

Johansen O (1977) Thermal conductivity of soils. Cold Regions Research and Engineering Laboratory, US Army Corps of Engineers, Hanover

Kersten MS (1949) Thermal properties of soils. Minnesota University Engineering Experiment Station, Bulletin No. 28, Minnesota University Institute of Technology, Minneapolis

Khader MS, Crane RA, Vachon RI (1980) Thermal conductivity of granular materials: a review. In: Rezk AMA (ed) Heat and fluid flow in power system components. Pergamon Press, Oxford, pp 111–141. doi: 10.1016/B978-0-08-024235-4.50014-1

Li D, Sun X, Khaleel M (2012) Comparison of different upscaling methods for predicting thermal conductivity of complex heterogeneous materials system: application on nuclear waste forms. Metall Mater Trans A 44(S1):61–69. doi: 10.1007/s11661-012-1269-3

Lu N, Dong Y (2015) Closed-form equation for thermal conductivity of unsaturated soils at room temperature. J Geotech Geoenviron Eng 141(6):04015016. doi: 10.1061/(ASCE)GT.1943-5606.0001295

Lu S, Ren T, Gong Y, Horton R (2007) An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J 71(1):8–14. doi: 10.2136/sssaj2006.0041

Lu Y, Lu S, Horton R, Ren T (2014) An empirical model for estimating soil thermal conductivity from texture, water content, and bulk density. Soil Sci Soc Am J 78(6):1859–1868. doi: 10.2136/sssaj2014.05.0218

McInnes KJ (1981) Thermal conductivities of soils from dryland wheat regions of Eastern Washington. Washington State University, Pullman

Nikolaev I, Leong W, Rosen M (2013) Experimental investigation of soil thermal conductivity over a wide temperature range. Int J Thermophys 34(6):1110–1129. doi: 10.1007/s10765-013-1456-5

Nikoosokhan S, Nowamooz H, Chazallon C (2015) Effect of dry density, soil texture and time–spatial variable water content on the soil thermal conductivity. Geomech Geoeng 11(2):149–158. doi: 10.1080/17486025.2015.1048313

Noborio K (2001) Measurement of soil water content and electrical conductivity by time domain reflectometry: a review. Comput Electron Agric 31(3):213–237. doi: 10.1016/S0168-1699(00)00184-8

Ochsner TE, Horton R, Ren T (2001) A new perspective on soil thermal properties. Soil Sci Soc Am J 65(6):1641–1647. doi: 10.2136/sssaj2001.1641

Pachepsky YA, Genuchten MTV (2011) Pedotransfer functions

Pachepsky YA, Rawls WJ, Timlin DJ (2013) The current status of pedotransfer functions: their accuracy, reliability, and utility in field- and regional-scale modeling. In: Corwin DL, Loague K, Ellsworth TR (eds) Assessment of non-point source pollution in the vadose zone. American Geophysical Union, Washington, pp 223–234. doi: 10.1029/GM108p0223

Peters-Lidard CD, Blackburn E, Liang X, Wood EF (1998) The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J Atmos Sci 55(7):1209–1224. doi: 10.1175/1520-0469(1998)055<1209:TEOSTC>2.0.CO;2

Pietrak K, Wisniewski TS (2015) A review of models for effective thermal conductivity of composite materials. J Power Technol 95(1):14

Progelhof RC, Throne JL, Ruetsch RR (1976) Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16(9):615–625. doi: 10.1002/pen.760160905

Ren T, Ochsner TE, Horton R (2003) Development of thermo-time domain reflectometry for vadose zone measurements. Vadose Zone J 2(4):544–551. doi: 10.2136/vzj2003.5440

Robinson DA, Jones SB, Wraith JM, Or D, Friedman SP (2003) A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J 2(4):444–475. doi: 10.2136/vzj2003.4440

Saito T, Hamamoto S, Ei Mon E, Takemura T, Saito H, Komatsu T, Moldrup P (2014) Thermal properties of boring core samples from the Kanto area, Japan: development of predictive models for thermal conductivity and diffusivity. Soils Found 54(2):116–125. doi: 10.1016/j.sandf.2014.02.004

Scheinost AC, Sinowski W, Auerswald K (1997) Regionalization of soil water retention curves in a highly variable soilscape, I. Developing a new pedotransfer function. Geoderma 78(3–4):129–143. doi: 10.1016/S0016-7061(97)00046-3

Schneider M, Goss KU (2012) Prediction of water retention curves for dry soils from an established pedotransfer function: evaluation of the Webb model. Water Resour Res. doi: 10.1029/2011WR011049

Shein EV, Arkhangel’Skaya TA (2006) Pedotransfer functions: state of the art, problems, and outlooks. Eurasian Soil Sci 39(10):1089–1099

Smith WO (1942) The thermal conductivity of dry soil. Soil Sci 53(6):435–460

Smith WO, Byers HG (1938) The thermal conductivity of dry soils of certain of the great soil groups. Soil Sci Soc Am Proc 3:13–19

Tarnawski VR, Leong WH (2016) Advanced geometric mean model for predicting thermal conductivity of unsaturated soils. Int J Thermophys 37(2):1–42. doi: 10.1007/s10765-015-2024-y

Tarnawski VR, Wagner B (1992) A new computerized approach to estimating the thermal properties of unfrozen soils. Can Geotech J 29(4):714–720. doi: 10.1139/t92-079

Tarnawski VR, Leong WH, Gori F, Buchan GD, Sundberg J (2002) Inter-particle contact heat transfer in soil systems at moderate temperatures. Int J Energy Res 26(15):1345–1358. doi: 10.1002/er.853

Tarnawski V, Momose T, Leong WH, Bovesecchi G, Coppa P (2009) Thermal conductivity of standard sands. Part I. Dry-state conditions. Int J Thermophys 30(3):949–968. doi: 10.1007/s10765-009-0596-0

Tarnawski VR, Momose T, Leong WH (2011) Thermal conductivity of standard sands II. Saturated conditions. Int J Thermophys 32(5):984–1005. doi: 10.1007/s10765-011-0975-1

Tarnawski VR, McCombie ML, Leong WH, Wagner B, Momose T, Schönenberger J (2012) Canadian field soils II. Modeling of quartz occurrence. Int J Thermophys 33(5):843–863. doi: 10.1007/s10765-012-1184-2

Tarnawski VR, McCombie ML, Momose T, Sakaguchi I, Leong WH (2013) Thermal conductivity of standard sands. Part III. Full range of saturation. Int J Thermophys 34(6):1130–1147. doi: 10.1007/s10765-013-1455-6

Tarnawski VR, Momose T, McCombie ML, Leong WH (2015) Canadian field soils III. Thermal-conductivity data and modeling. Int J Thermophys 36(1):119–156. doi: 10.1007/s10765-014-1793-z

van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898. doi: 10.2136/sssaj1980.03615995004400050002x

Wang S, Wang Q, Fan J, Wang W (2012) Soil thermal properties determination and prediction model comparison (in Chinese with English abstract). Trans Chin Soc Agric Eng 28(5):78–84

Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113(1–4):223–243. doi: 10.1016/S0168-1923(02)00109-0

Woodside W, Messmer JH (1961) Thermal conductivity of porous media. I. Unconsolidated sands. J Appl Phys 32(9):1688–1699

Wösten JHM, Pachepsky YA, Rawls WJ (2001) Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J Hydrol 251(3–4):123–150. doi: 10.1016/S0022-1694(01)00464-4

Yamazaki Y, Tsuchiya F, Tsuji O (2003) Measurement and estimation of thermal conductivity of quartz-containing frozen and unfrozen soils (in Japanese with English abstract). Trans Jpn Soc Irrig Drain Reclam Eng (Japan) 226(71-4):497–505

Zheng D, van der Velde R, Su Z, Wang X, Wen J, Booij MJ, Hoekstra AY, Chen Y (2015) Augmentations to the Noah model physics for application to the yellow river source area. Part II: turbulent heat fluxes and soil heat transport. J Hydrometeorol 16(6):2677–2694. doi: 10.1175/JHM-D-14-0199.1