A modified approach for modelling river–aquifer interaction of gaining rivers in MODFLOW, including riverbed heterogeneity and river bank seepage

Gert Ghysels1, Sarah Mutua1, Gabriela Baya Veliz1,2, Marijke Huysmans1,2
1Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
2Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anibas C, Buis K, Verhoeven R, Meire P, Batelaan O (2011) A simple thermal mapping method for seasonal spatial patterns of groundwater–surface water interaction. J Hydrol 397:93–104. https://doi.org/10.1016/j.jhydrol.2010.11.036

Anibas C, Schneidewind U, Vandersteen G, Joris I, Seuntjes P, Batelaan O (2016) From streambed temperature measurements to spatial-temporal flux quantification: using the LPML method to study groundwater–surface water interaction. Hydrol Process 30:203–216. https://doi.org/10.1002/hyp.10588

Anibas C, Tolche AD, Ghysels G, Nossent J, Schneidewind U, Huysmans M, Batelaan O (2018) Delineation of spatial-temporal patterns of groundwater/surface-water interaction along a river reach (Aa River, Belgium) with transient thermal modeling. Hydrogeol J 26:819–835. https://doi.org/10.1007/s10040-017-1695-9

Barlow PM, Harbaugh AW (2006) USGS directions in MODFLOW development. Groundwater 44:771–774. https://doi.org/10.1111/j.1745-6584.2006.00260.x

Batelaan O, De Smedt F (2007) GIS-based recharge estimation by coupling surface–subsurface water balances. J Hydrol 337:337–355. https://doi.org/10.1016/j.jhydrol.2007.02.001

Baya Veliz G (2017) Influence of riverbank seepage on river–aquifer interactions at the Aa river. MSc Thesis, Vrije Universiteit Brussel (VUB) and KU Leuven, Belgium

Benoit S, Ghysels G, Gommers K, Hermans T, Nguyen F, Huysmans M (2018) Characterization of spatially variable riverbed hydraulic conductivity using electrical resistivity tomography and induced polarization. Hydrogeol J. https://doi.org/10.1007/s10040-018-1862-7

Brunner P, Simmons CT, Cook PG, Therrien R (2010) Modeling surface water-groundwater interaction with MODFLOW: some considerations. Groundwater 48:174–180. https://doi.org/10.1111/j.1745-6584.2009.00644.x

Brunner P, Therrien R, Renard P, Simmons CT, Hendricks Franssen HJ (2017) Advances in understanding river–groundwater interactions. Rev Geophys 55:2017RG000556. https://doi.org/10.1002/2017RG000556

Cardenas MB, Zlotnik VA (2003) Three-dimensional model of modern channel bend deposits: 3D model of channel bend deposits. Water Resour Res 39. https://doi.org/10.1029/2002WR001383

Chen X (2000) Measurement of streambed hydraulic conductivity and its anisotropy. Environ Geol 39:1317–1324

Constantz J (2016) Streambeds merit recognition as a scientific discipline. WIREs Water 3:13–18. https://doi.org/10.1002/wat2.1119

Deutsch CV, Journel AG (1998) Geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New York

DOV (2018) Databank Ondergrond Vlaanderen. https://dov.vlaanderen.be/ . Accessed 18 Jul 2018

Ebel BA, Mirus BB, Heppner CS, VanderKwaak JE, Loague K (2009) First-order exchange coefficient coupling for simulating surface water–groundwater interactions: parameter sensitivity and consistency with a physics-based approach. Hydrol Process 23:1949–1959. https://doi.org/10.1002/hyp.7279

Fox A, Laube G, Schmidt C, Fleckenstein JH, Arnon S (2016) The effect of losing and gaining flow conditions on hyporheic exchange in heterogeneous streambeds. Water Resour Res 52:7460–7477. https://doi.org/10.1002/2016WR018677

Furman A (2008) Modeling coupled surface–subsurface flow processes: a review. Vadose Zone J 7:741–756. https://doi.org/10.2136/vzj2007.0065

Ghysels G, Benoit S, Awol H, Jensen EP, Tolche AD, Anibas C, Huysmans M (2018) Characterization of meter-scale spatial variability of riverbed hydraulic conductivity in a lowland river (Aa River, Belgium). J Hydrol 559:1013–1027. https://doi.org/10.1016/j.jhydrol.2018.03.002

Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

Harbaugh AW (2005) MODFLOW-2005: the U.S. Geological Survey modular ground-water model: the ground-water flow process. US Geological Survey, Reston, VA

Hsieh PA, Freckleton JR (1993) Documentation of a computer program to simulate horizontal-flow barriers using the U.S. Geological Survey’s modular three-dimensional finite-difference ground-water flow model. US Geol Surv Open-File Rep 92-477

Irvine DJ, Brunner P, Franssen H-JH, Simmons CT (2012) Heterogeneous or homogeneous? Implications of simplifying heterogeneous streambeds in models of losing streams. J Hydrol 424:16–23. https://doi.org/10.1016/j.jhydrol.2011.11.051

Kalbus E, Schmidt C, Molson JW, Reinstorf F, Schirmer M (2009) Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge. Hydrol Earth Syst Sci 13:69–77. https://doi.org/10.5194/hess-13-69-2009

Kurtz W, Hendricks Franssen H-J, Brunner P, Vereecken H (2013) Is high-resolution inverse characterization of heterogeneous river bed hydraulic conductivities needed and possible? Hydrol Earth Syst Sci 17:3795–3813. https://doi.org/10.5194/hess-17-3795-2013

McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. US Geol Surv Tech Water Resour Invest 06-A1

Mehl SW, Hill MC (2005) MODFLOW-2005, The U.S. Geological Survey modular ground-water model - Documentation of shared node Local Grid Refinement (LGR) and the Boundary Flow and Head (BFH) Package. USGS Numbered Series 6-A12

Mehl SW, Hill MC (2007) MODFLOW-2005, The U.S. Geological Survey modular ground-water model - Documentation of the Multiple-Refined-Areas Capability of Local Grid Refinement (LGR) and the Boundary Flow and Head (BFH) Package. USGS Numbered Series 6-A21

Mehl SW, Hill MC (2013) MODFLOW-LGR—Documentation of Ghost Node Local Grid Refinement (LGR2) for Multiple Areas and the Boundary Flow and Head (BFH2) Package. US Geol Surv Tech Methods 6-A44

Mohammed GA (2009) Groundwater-surface water interaction along a lowland river. PhD Thesis, Vrije Universiteit Brussel (VUB), Belgium

Mutua SM (2013) Analysing the influence of groundwater-surface water interaction on the groundwater balance in the Aa river. MSc Thesis, Vrije Universiteit Brussel (VUB) and KU Leuven, Belgium

Niswonger RG, Prudic DE (2005) Documentation of the streamflow-routing (SFR2) package to include unsaturated flow beneath streams: a modification to SFR1. US Geol Surv Tech Methods 6-A13

Osman YZ, Bruen MP (2002) Modelling stream–aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW. J Hydrol 264:69–86. https://doi.org/10.1016/S0022-1694(02)00067-7

Panday S, Langevin CD, Niswonger RG, Ibaraki M, Hughes JD (2017) MODFLOW–USG Version 1: an unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation. US Geol Surv Tech Methods 6-A45

Partington D, Therrien R, Simmons CT, Brunner P (2017) Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds. Rev Geophys 55:287–309. https://doi.org/10.1002/2016RG000530

Prickett TA, Lonnquist CG (1971) Selected digital computer techniques for groundwater resource evaluation. Bull Ill State Water Survey 55, 62 pp

Prudic DE (1989) Documentation of a computer program to simulate stream-aquifer relations using a modular, finite-difference, ground-water flow model. US Geol Surv Open-File Rep 88-729

Prudic DE, Konikow LF, Banta ER (2004) A new streamflow-routing (SFR1) package to simulate stream–aquifer interaction with MODFLOW-2000. US Geol Surv Open-File Rep 2004-1042

Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS: a user’s guide. Cambridge University Press, Cambridge, UK

Rhodes KA, Proffitt T, Rowley T, Knappett PSK, Montiel D, Dimova N, Tebo D, Miller GR (2017) The importance of bank storage in supplying baseflow to rivers flowing through compartmentalized, alluvial aquifers. Water Resour Res 53:10539–10557. https://doi.org/10.1002/2017WR021619

Rosenberry DO, Pitlick J (2009) Local-scale variability of seepage and hydraulic conductivity in a shallow gravel-bed river. Hydrol Process 23:3306–3318. https://doi.org/10.1002/hyp.7433

Salehin M, Packman AI, Paradis M (2004) Hyporheic exchange with heterogeneous streambeds: laboratory experiments and modeling. Water Resour Res 40:W11504. https://doi.org/10.1029/2003WR002567

Schneidewind U, van Berkel M, Anibas C, Vandersteen G, Schmidt C, Joris I, Seuntjens P, Batelaan O, Zwart HJ (2016) LPMLE3: a novel 1-D approach to study water flow in streambeds using heat as a tracer. Water Resour Res 52:6596–6610. https://doi.org/10.1002/2015WR017453

Schubert J (2002) Hydraulic aspects of riverbank filtration: field studies. J Hydrol 266:145–161. https://doi.org/10.1016/S0022-1694(02)00159-2

Stewardson MJ, Datry T, Lamouroux N, Pella H, Thommeret N, Valette L, Grant SB (2016) Variation in reach-scale hydraulic conductivity of streambeds. Geomorphology 259:70–80. https://doi.org/10.1016/j.geomorph.2016.02.001

Therrien R, McLaren RG, Sudicky EA, Panday SM (2010) HydroGeoSphere: a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Groundwater Simulation Group, Univ. Waterloo, Waterloo, ON

Ulrich C, Hubbard SS, Florsheim J, Rosenberry D, Borglin S, Trotta M, Seymour D (2015) Riverbed clogging associated with a California riverbank filtration system: an assessment of mechanisms and monitoring approaches. J Hydrol 529:1740–1753. https://doi.org/10.1016/j.jhydrol.2015.08.012