A modification of the $$\alpha \hbox {BB}$$ method for box-constrained optimization and an application to inverse kinematics
Tóm tắt
For many practical applications it is important to determine not only a numerical approximation of one but a representation of the whole set of globally optimal solutions of a non-convex optimization problem. Then one element of this representation may be chosen based on additional information which cannot be formulated as a mathematical function or within a hierarchical problem formulation. We present such an application in the field of robotic design. This application problem can be modeled as a smooth box-constrained optimization problem. We extend the well-known
$$\alpha \hbox {BB}$$
method such that it can be used to find an approximation of the set of globally optimal solutions with a predefined quality. We illustrate the properties and give a proof for the finiteness and correctness of our modified
$$\alpha \hbox {BB}$$
method.
Tài liệu tham khảo
Adjiman CS, Androulakis IP, Floudas CA (1998) A global optimization method, \(\alpha \text{ BB }\), for general twice-differeentiable constrained NLPs—II. Implementation and computational results. Comput Chem Eng 22(9):1159–1179
Adjiman CS, Dallwig S, Floudas CA, Neumaier A (1998) A global optimization method, \(\alpha \text{ BB }\), for general twice-differeentiable constrained NLPs–I. Theoretical advances. Comput Chem Eng 22(9):1137–1158
Androulakis IP, Floudas CA (2004) Computational experience with a new class of convex underestimators: box-constrained NLP problems. J Glob Optim 29:249–264
Androulakis IP, Floudas CA (2004) A new class of improved convex underestimators for twice continuously differentiable constrained NLPs. J Glob Optim 30:367–390
Androulakis IP, Maranas CD, Floudas CA (1995) \(\alpha \text{ BB }\): a global optimization method for general constrained nonconvex problems. J Glob Optim 7:337–363
Al-Khayyal FA, Falk JE (1983) Jointly constrained biconvex programming. Math Oper Res 8:273–286
Csendes T, Ratz D (1997) Subdivision direction selection in interval methods for global optimization. SIAM J Numer Anal 34(3):922–938
Csendes T, Klatte R, Ratz D (2000) A posteriori direction selection rules for interval optimization methods. Cent Eur J Oper Res 8(3):225–236
Easom EE (1990) A survey of global optimization techniques. M. Eng. thesis, University of Louisville, Louisville, KY
Epitropakis MG, Plagianakos VP, Vrahatis MN (2011) Finding multiple global optima exploiting differential evolution’s niching capability. In: Proceedings of IEEE SDE, Paris, France, April 2011, pp 80–87
Floudas CA (2000) Deterministic global optimization. Kluwer, Dordrecht
Gerschgorin S (1931) Über die Abgrenzung der Eigenwerte einer Matrix. Izv Akad Nauk SSSR Ser Fiz Mat 6:749–754
Hammer R, Hocks M, Kulisch U, Ratz D (1995) C++ toolbox for verified computing I. Springer, Berlin
Hansen E (1980) Global optimization using interval analysis-the multi-dimensional case. Numer Math 34:247–270
Hansen E, Walster GW (2004) Global optimization using interval analysis, 2nd edn., revised and expanded, Marcel Dekker, New York
Hertz D (1992) The extreme eigenvalues and stability of real symmetric interval matrices. IEEE Trans Autom Control 37:532–535
Hladík M, Daney D, Tsigaridas E (2010) Bounds on real eigenvalues and singular values of interval matrices. SIAM J Matrix Anal Appl 31(4):2116–2129
Hladík M (2015a) An extension of the \(\alpha \text{ BB }\)-type underestimation to linear parametric hessian matrices. J Glob Optim. doi:10.1007/s10898-015-0304-5
Hladík M (2015b) On the efficient Gerschgorin inclusion usage in the global optimization \(\alpha \text{ BB }\) method. J Global Optim 61(2):235–253
Jamil M, Yang X-S, Zepernick H-J (2013) Test functions for global optimization: a comprehensive survey. In: Yang X-S et al (eds) Swarm intelligence and bio-inspired computation: theory and applications. Elsevier, London, pp 194–222
Liu WB, Floudas CA (1993) A remark on the GOP algorithm for global optimization. J Glob Optim 3:519–521
Maranas CD, Floudas CA (1992) A global optimization approach for Lennard–Jones microclusters. J Chem Phys 97(10):7667–7678
Maranas CD, Floudas CA (1994) A deterministic global optimization approach for molecular structure determination. J Chem Phys 100(2):1247–1261
Maranas CD, Floudas CA (1994) Global minimum potential energy conformations of small molecules. J Glob Optim 4:135–170
Maranas CD, Floudas CA (1995) Finding all solutions of nonlinearly constrained systems of equitations. J Glob Optim 7:143–183
McCormick GP (1976) Computability of global solutions to factorable nonconvex programs: Part I—convex underestimating problems. Math Program 10:147–175
Mönningmann M (2008) Efficient calculations of bounds on spectra of Hessian matrices. SIAM J Sci Comput 30:2340–2357
Mönningmann M (2011) Fast calculations of spectral bounds for Hessian matrices on hyperrectangles. SIAM J Matrix Anal Appl 32(4):1351–1366
Montaz Ali M, Khomatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Glob Optim 31:635–672
Moore RE, Kearfott RB, Cloud MJ (2009) Introduction to interval analysis. SIAM, Philadelphia, PA
Paul RP (1982) Robot manipulators: mathematics, programming, and control. MIT Press, Cambridge, MA
Rastrigin LA (1974) Systems of extremal control. Nauka, Moscow
Ratz D (1992) Automatische Ergebnisverifikation bei globalen Optimierungsproblemen. Diss., Univ. Karlsruhe
Rohn J (1994) Positive definiteness and stability of interval matrices. SIAM J Matrix Anal Appl 15(1):175–184
Rump SM (1999) INTLAB—INTerval LABoratory. In: Csendes T (ed) Developments in reliable computing. Kluwer Academic Publishers, Dordrecht, pp 77–104
Schulze Darup M, Kastsian M, Mross S, Mönningmann M (2014) Efficient computation of spectral bounds for Hessian matrices on hyperrectangles for global optimization. J Glob Optim 58:631–652
Skjäl A, Westerlund T, Misener R, Floudas CA (2012) A generalization of the classical \(\alpha \text{ BB }\) convex underestimation via diagonal and non-diagonal quadratic terms. J Optim Theory Appl 154(2):462–490
Skjäl A, Westerlund T (2014) New methods for calculating \(\alpha \text{ BB }\)-type underestimators. J Glob Optim 58:411–427