A modelling study on quantifying the impact of urbanization and regional effects on the wintertime surface temperature over a rapidly-growing tropical city
Tóm tắt
Climate change and sustainability are among the most widely used terms among policymakers and the scientific community in recent times. However, climate action or steps to sustainable growth in cities in the global south are mostly borrowed from general studies at a few large urban agglomerations in the developed world. There are very few modeling studies over south Asia to understand and quantify the impact of climate change and urbanization on even the most primary meteorological variable, such as temperature. Such quantifications are difficult to estimate due to the non-availability of relevant long-term observational datasets. In this modeling study, an attempt is made to understand the urban heat island (UHI), its transition, and the segregation of regional climate change effects and urbanization over the rapidly growing tier 2 tropical smart city Bhubaneswar in India. The model is able to simulate the UHI for both land surface temperature, called the SUHI, and 2-m air temperature, called UHI, reasonably well. Their magnitudes were ~ 5 and 2.5°C, respectively. It is estimated that nearly 60–70% of the overall air and 70–80% of the land surface temperature increase during nighttime over the city between the period 2004 and 2015 is due to urbanization, with the remaining due to the regional/non-local effects.
Tài liệu tham khảo
Anasuya, B., Swain, D., & Vinoj, V. (2019). Rapid urbanization and associated impacts on land surface temperature changes over Bhubaneswar Urban District, India. Environmental Monitoring and Assessment,191, 790. https://doi.org/10.1007/s10661-019-7699-2
Azevedo, J. A., Chapman, L., & Muller, C. L. (2016). Quantifying the daytime and night-time urban heat Island in Birmingham, UK: A comparison of satellite derived land surface temperature and high resolution air temperature observations. Remote Sensing,8, 153. https://doi.org/10.3390/rs8020153
Bougeault, P., & Lacarrere, P. (1989). Parameterization of Orography-Induced Turbulence in a Mesobeta-Scale Model. Monthly Weather Review,117, 1872–1890. https://doi.org/10.1175/1520-0493(1989)117%3c1872:POOITI%3e2.0.CO;2
Bounoua, L., Thome, K., & Nigro, J. (2021). Cities Exacerbate Climate Warming. Urban Sciences,5, 27. https://doi.org/10.3390/urbansci5010027
Boyaj, A., Dasari, H. P., Hoteit, I., & Ashok, K. (2020). Increasing heavy rainfall events in south India due to changing land use and land cover. Quarterly Journal Royal Meteorological Society,146, 3064–3085. https://doi.org/10.1002/qj.3826
Butsch, C., Kumar, S., Wagner, P. D., Kroll, M., Kantakumar, L. N., Bharucha, E., Schneider, K., & Kraas, F. (2017). Growing “Smart”? Urbanization processes in the Pune urban agglomeration. Sustain,9, 1–21. https://doi.org/10.3390/su9122335
Chrysanthou, A., Van Der Schrier, G., Van Den Besselaar, E. J. M., Klein Tank, A. M. G., & Brandsma, T. (2014). The effects of urbanization on the rise of the European temperature since 1960. Geophysical Research Letters,41, 7716–7722. https://doi.org/10.1002/2014GL061154
Darmanto, N. S., Varquez, A. C. G., Kawano, N., & Kanda, M. (2019). Future urban climate projection in a tropical megacity based on global climate change and local urbanization scenarios. Urban Climate,29, 100482. https://doi.org/10.1016/j.uclim.2019.100482
Dudhia, J. (1989). Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. Journal of Atmospheric Science,46, 3077–3107. https://doi.org/10.1175/1520-0469(1989)046%3c3077:NSOCOD%3e2.0.CO;2
Gogoi, P. P., Vinoj, V., Swain, D., Roberts, G., Dash, J., & Tripathy, S. (2019). Land use and land cover change effect on surface temperature over Eastern India. Science and Reports,9, 1–10. https://doi.org/10.1038/s41598-019-45213-z
Grimmond, S. (2007). How is urbanization altering local and regional climate? Geographical Journal,173, 6.
Grimmond, C. S. B., Ward, H. C., & Kotthaus, S. (2016). How is urbanization altering local and regional climate? Routledge Handbook Urban Global Environment Change (pp. 1–10)
Hong, S., Lim, K., Kim, J., Lim, J. J., & Dudhia, J. (2005). WRF Single-Moment 6-Class Microphysics Scheme ( WSM6) (pp. 5–6)
Jänicke, B., Meier, F., Fenner, D., Fehrenbach, U., Holtmann, A., & Scherer, D. (2017). Urban-rural differences in near-surface air temperature as resolved by the Central Europe Refined analysis (CER): sensitivity to planetary boundary layer schemes and urban canopy models. International Journal of Climatology,37, 2063–2079. https://doi.org/10.1002/joc.4835
Jones, P. D., Groisman, P. Y., Coughlan, M., Plummer, N., Wang, W. C., & Karl, T. R. (1990). Assessment of urbanization effects in time series of surface air temperature over land. Nature,347, 169–172. https://doi.org/10.1038/347169a0
Kain, J. S., & Fritsch, J. M. (1990). A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization. Journal of Atmospheric Science,47, 2784–2802. https://doi.org/10.1175/1520-0469(1990)047%3c2784:AODEPM%3e2.0.CO;2
Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use. Nature,425, 528–531. https://doi.org/10.1038/nature01649.1
Kedia, S., Bhakare, S. P., Dwivedi, A. K., Islam, S., & Kaginalkar, A. (2021). Estimates of change in surface meteorology and urban heat island over northwest India: Impact of urbanization. Urban Climate,36, 100782. https://doi.org/10.1016/j.uclim.2021.100782
Kim, M. K., & Kim, S. (2011). Quantitative estimates of warming by urbanization in South Korea over the past 55 years (1954–2008). Atmospheric Environment,45, 5778–5783. https://doi.org/10.1016/j.atmosenv.2011.07.028
Lal, P., Shekhar, A., & Kumar, A. (2021). Quantifying Temperature and Precipitation Change Caused by Land Cover Change: A Case Study of India Using the WRF Model. Frontiers in Environmental Science,9, 588. https://doi.org/10.3389/fenvs.2021.766328
Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E., & Li, S. (2015). Local cooling and warming effects of forests based on satellite observations. Nature Communications,6, 6603. https://doi.org/10.1038/ncomms7603
Li, H., Wolter, M., Wang, X., & Sodoudi, S. (2018). Impact of land cover data on the simulation of urban heat island for Berlin using WRF coupled with bulk approach of Noah-LSM. Theoretical and Applied Climatology,134, 67–81. https://doi.org/10.1007/s00704-017-2253-z
Martin-Vide, J., Sarricolea, P., & Moreno-García, M. C. (2015). On the definition of urban heat island intensity: The “rural” reference. Frontiers in Earth Science,3, 2–4. https://doi.org/10.3389/feart.2015.00024
Masson, V., Lemonsu, A., Hidalgo, J., & Voogt, J. (2020). Urban climates and climate change. Annual Review of Environment and Resources,45, 411–444. https://doi.org/10.1146/annurev-environ-012320-083623
Mathew, A., Khandelwal, S., Kaul, N., & Chauhan, S. (2018). Analyzing the diurnal variations of land surface temperatures for surface urban heat island studies: Is time of observation of remote sensing data important? Sustainable Cities and Society,40, 194–213. https://doi.org/10.1016/j.scs.2018.03.032
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research Atmospheres,102, 16663–16682. https://doi.org/10.1029/97jd00237
Mohan, M., & Bhati, S. (2011). Analysis of WRF Model Performance over Subtropical Region of Delhi, India. Advances in Meteorology,2011, 1–13. https://doi.org/10.1155/2011/621235
Mohan, M., Kandya, A., & Battiprolu, A. (2011). Urban Heat Island Effect over National Capital Region of India: A Study using the Temperature Trends. Journal of Environmental Protection (Irvine, California),02, 465–472. https://doi.org/10.4236/jep.2011.24054
Mohan, M., Kikegawa, Y., Gurjar, B. R., Bhati, S., Kandya, A., & Ogawa, K. (2012). Urban Heat Island Assessment for a Tropical Urban Airshed in India. Atmospheres Climate Science,02, 127–138. https://doi.org/10.4236/acs.2012.22014
Mohan, M., Kikegawa, Y., Gurjar, B. R., Bhati, S., & Kolli, N. R. (2013). Assessment of urban heat island effect for different land use-land cover from micrometeorological measurements and remote sensing data for megacity Delhi. Theoretical and Applied Climatology,112, 647–658. https://doi.org/10.1007/s00704-012-0758-z
Nayak, S. (2021). Land use and land cover change and their impact on temperature over central India. Letters in Spatial and Resource Sciences,14, 129–140. https://doi.org/10.1007/s12076-021-00269-2
Nayak, S., & Mandal, M. (2012). Impact of land use and land cover changes on temperature trends over Western India. Current Science,89, 1166–1173. https://doi.org/10.1016/j.landusepol.2019.104238
Nayak, S., & Mandal, M. (2019). Impact of land use and land cover changes on temperature trends over India. Land Use Policy,89, 104238. https://doi.org/10.1016/j.landusepol.2019.104238
Nayak, S., Maity, S., Sahu, N., Saini, A., Singh, K. S., Nayak, H. P., & Dutta, S. (2022). Application of “Observation Minus Reanalysis” Method towards LULC Change Impact over Southern India. ISPRS International Journal of Geo-Information,11, 94. https://doi.org/10.3390/ijgi11020094
Nayak, S., Maity, S., Singh, K. S., Nayak, H. P., & Dawn, S. (2021). Influence of the Changes in Land-Use and Land Cover on Temperature over Northern and North-Eastern Sridhara.
Oke, T., Mills, G., Christen, A., & Voogt, J. (2017). Urban Climates. In Urban Climates (pp. I). Cambridge: Cambridge University Press
Parker, D. E. (2006). A demonstration that large-scale warming is not urban. Journal of Climate,19, 2882–2895. https://doi.org/10.1175/JCLI3730.1
Peterson, T. C., Gallo, K. P., Lawrimore, J., Owen, T. W., Huang, A., & McKittrick, D. A. (1999). Global rural temperature trends. Geophysical Research Letters,26, 329–332. https://doi.org/10.1029/1998GL900322
Prijith, S. S., Srinivasarao, K., Lima, C. B., Gharai, B., Rao, P. V. N., SeshaSai, M. V. R., & Ramana, M. V. (2021). Effects of land use/land cover alterations on regional meteorology over Northwest India. Science of the Total Environment,765, 142678. https://doi.org/10.1016/j.scitotenv.2020.142678
Sahoo, S. K., Ajilesh, P. P., Gouda, K. C., & Himesh, S. (2020). Impact of land-use changes on the genesis and evolution of extreme rainfall event: a case study over Uttarakhand, India. Theoretical and Applied Climatology,140, 915–926. https://doi.org/10.1007/s00704-020-03129-z
Salamanca, F., Martilli, A., Tewari, M., & Chen, F. (2011). A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. Journal of Applied Meteorology and Climatology,50, 1107–1128. https://doi.org/10.1175/2010JAMC2538.1
Salamanca, F., Zhang, Y., Barlage, M., Chen, F., Mahalov, A., & Miao, S. (2018). Evaluation of the WRF-Urban Modeling System Coupled to Noah and Noah-MP Land Surface Models Over a Semiarid Urban Environment. Journal of Geophysical Research: Atmospheres,123, 2387–2408. https://doi.org/10.1002/2018JD028377
Sethi, S. S., Vinoj, V., Gogoi, P. P., Landu, K., & Swain, D. (2022). Surface urban heat island ( SUHI ) and its evolution over a rapidly growing tropical urban complex in Eastern India Surface urban heat island ( SUHI ) and its evolution over a rapidly growing tropical urban complex in Eastern India.
Sultana, S., & Satyanarayana, A. N. V. (2019). Impact of urbanisation on urban heat island intensity during summer and winter over Indian metropolitan cities. Environmental Monitoring and Assessment,191, 789. https://doi.org/10.1007/s10661-019-7692-9
Sun, Y., Zhang, X., Ren, G., Zwiers, F. W., & Hu, T. (2016). Contribution of urbanization to warming in China. Nature Clinical Practice Endocrinology & Metabolism,6, 706–709. https://doi.org/10.1038/nclimate2956
Sussman, H. S., Raghavendra, A., & Zhou, L. (2019). Impacts of increased urbanization on surface temperature, vegetation, and aerosols over Bengaluru, India. Remote Sensing Applications: Society and Environment,16, 100261. https://doi.org/10.1016/j.rsase.2019.100261
Swain, D., Roberts, G. J., Dash, J., Lekshmi, K., Vinoj, V., & Tripathy, S. (2017). Impact of Rapid Urbanization on the City of Bhubaneswar, India. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences,87, 845–853. https://doi.org/10.1007/s40010-017-0453-7
Swain, M., Sinha, P., Pattanayak, S., Guhathakurta, P., & Mohanty, U. C. (2020). Characteristics of observed rainfall over Odisha: An extreme vulnerable zone in the east coast of India. Theoretical and Applied Climatology,139, 517–531. https://doi.org/10.1007/s00704-019-02983-w
Taha, H. (1999). Modifying a mesoscale meteorological model to better incorporate urban heat storage: A bulk-parameterization approach. Journal of Applied Meteorology,38, 466–473. https://doi.org/10.1175/1520-0450(1999)038%3c0466:MAMMMT%3e2.0.CO;2
United Nations. (2018). World Urbanization Prospects 2018, Department of Economic and Social Affairs. World Population Prospects 2018.
Unnikrishnan, C. K., Gharai, B., Mohandas, S., Mamgain, A., Rajagopal, E. N., Iyengar, G. R., & Rao, P. V. N. (2016). Recent changes on land use/land cover over Indian region and its impact on the weather prediction using Unified model. Atmospheric Science Letters,17, 294–300. https://doi.org/10.1002/asl.658
Veena, K., Parammasivam, K. M., & Venkatesh, T. N. (2020). Urban Heat Island studies: Current status in India and a comparison with the International studies. Journal of Earth System Science,129, 1–5. https://doi.org/10.1007/s12040-020-1351-y
Vinayak, B., Lee, H. S., Gedam, S., & Latha, R. (2022). Impacts of future urbanization on urban microclimate and thermal comfort over the Mumbai metropolitan region, India. Sustainable Cities and Society,79, 103703. https://doi.org/10.1016/j.scs.2022.103703
VS Badarinath, K., V Mahalakshmi, D., & Bishoyi Ratna, S. (2012). Influence of Land Use Land Cover on Cyclone Track Prediction – A Study During Aila Cyclone. Open Atmospheric Science Journal,6, 33–41. https://doi.org/10.2174/1874282301206010033
Wang, J., & Yan, Z. W. (2016). Urbanization-related warming in local temperature records: a review. Atmospheric and Oceanic Science Letters,9, 129–138. https://doi.org/10.1080/16742834.2016.1141658
Winckler, J., Reick, C. H., Luyssaert, S., Cescatti, A., Stoy, P. C., Lejeune, Q., Raddatz, T., Chlond, A., Heidkamp, M., & Pongratz, J. (2019). Different response of surface temperature and air temperature to deforestation in climate models. Earth System Dynamics,10, 473–484. https://doi.org/10.5194/esd-10-473-2019