A model with ‘growth retardation’ for the kinetic heterogeneity of tumour cell populations

Mathematical Biosciences - Tập 206 - Trang 185-199 - 2007
O. Arino, A. Bertuzzi1, A. Gandolfi1, E. Sánchez2, C. Sinisgalli1
1Istituto di Analisi dei Sistemi ed Informatica ‘A. Ruberti’ – CNR, Viale Manzoni 30, 00184 Roma, Italy
2Departamento de Matemáticas, E.T.S.I. Industriales, c. José Gutiérrez Abascal 2, 28006 Madrid, Spain

Tài liệu tham khảo

Steel, 1977 Helmlinger, 1997, Interstitial pH and pO2 gradients in solid tumors in vivo: simultaneous high-resolution measurements reveal a lack of correlation, Nat. Med., 3, 177, 10.1038/nm0297-177 Weiner, 1966, On age dependent branching processes, J. Appl. Probab., 3, 383, 10.2307/3212127 Jagers, 1975 Kimmel, 2002 Trucco, 1965, Mathematical models for cellular systems. The Von Foerster equation Part I, Bull. Math. Biophys., 27, 285, 10.1007/BF02478406 Trucco, 1965, Mathematical models for cellular systems. The Von Foerster equation Part II, Bull. Math. Biophys., 27, 449, 10.1007/BF02476849 Bertuzzi, 1981, Mathematical models of the cell cycle with a view to tumor studies, Math. Biosci., 53, 159, 10.1016/0025-5564(81)90017-1 Webb, 1985 Arino, 1995, A survey of structured cell population dynamics, Acta Biotheor., 43, 3, 10.1007/BF00709430 Arino, 1997, Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence, J. Math. Anal. Appl., 215, 499, 10.1006/jmaa.1997.5654 Chuang, 1975, Mathematical analysis of cancer chemotherapy, Bull. Math. Biol., 37, 147, 10.1007/BF02470621 Sena, 1999, Measuring the complexity of cell cycle arrest and killing of drugs: kinetics of phase-specific effects induced by taxol, Cytometry, 37, 113, 10.1002/(SICI)1097-0320(19991001)37:2<113::AID-CYTO4>3.0.CO;2-M Yanagisawa, 1985, Cell cycle analysis using numerical simulation of bivariate DNA/bromodeoxyuridine distributions, Cytometry, 6, 550, 10.1002/cyto.990060609 Ubezio, 1990, Cell cycle simulation for flow cytometry, Comput. Meth. Prog. Biomed., 31, 255, 10.1016/0169-2607(90)90010-7 Baisch, 1995, Heterogeneous cell kinetics in tumors analyzed with a simulation model for bromodeoxyuridine single and multiple labeling, Cytometry, 21, 52, 10.1002/cyto.990210111 Lebowitz, 1974, A theory for the age and generation time distribution of a microbial population, J. Math. Biol., 1, 17, 10.1007/BF02339486 Webb, 1986, A model of proliferating cell populations with inherited cycle length, J. Math. Biol., 23, 269, 10.1007/BF00276962 Rubinow, 1968, A maturity-time representation for cell populations, Biophys. J., 8, 1055, 10.1016/S0006-3495(68)86539-7 Bertuzzi, 2002, Kinetic heterogeneity of an experimental tumour revealed by BrdUrd incorporation and mathematical modelling, Bull. Math. Biol., 64, 355, 10.1006/bulm.2001.0280 Shackney, 1973, A cytokinetic model for heterogeneous mammalian cell populations I. Cell growth and cell death, J. Theor. Biol., 38, 305, 10.1016/0022-5193(73)90177-X Shackney, 1974, A cytokinetic model for heterogeneous mammalian cell populations II. Tritiated thymidine studies: the per cent labeled mitosis (PLM) curve, J. Theor. Biol., 44, 49, 10.1016/S0022-5193(74)80029-9 Shackney, 1999, Cell cycle models for molecular biology and molecular oncology: exploring new dimensions, Cytometry, 35, 97, 10.1002/(SICI)1097-0320(19990201)35:2<97::AID-CYTO1>3.0.CO;2-5 Arino, 2005, The asynchronous exponential growth property in a model for the kinetic heterogeneity of tumour cell populations, J. Math. Anal. Appl., 302, 521, 10.1016/j.jmaa.2004.08.024