A model specification test for the variance function in nonparametric regression
Tóm tắt
The problem of testing for the parametric form of the conditional variance is considered in a fully nonparametric regression model. A test statistic based on a weighted
$$L_2$$
-distance between the empirical characteristic functions of residuals constructed under the null hypothesis and under the alternative is proposed and studied theoretically. The null asymptotic distribution of the test statistic is obtained and employed to approximate the critical values. Finite sample properties of the proposed test are numerically investigated in several Monte Carlo experiments. The developed results assume independent data. Their extension to dependent observations is also discussed.
Tài liệu tham khảo
Alba-Fernández, V., Jiménez-Gamero, M.D., Muñoz-García, J.: A test for the two-sample problem based on empirical characteristic functions. Comput. Stat. Data Anal. 52, 3730–3748 (2008)
Bradley, R.C.: Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2, 107–144 (2005)
Dette, H., Hetzler, B.: A simple test for the parametric form of the variance function in nonparametric regression. Ann. Inst. Statist. Math. 61, 861–886 (2009a)
Dette, H., Hetzler, B.: Khmaladze transformation of integrated variance processes with applications to goodness-of-fit testing. Math. Methods Statist. 18, 97–116 (2009b)
Dette, H., Marchlewski, M.: A robust test for homoscedasticity in nonparametric regression. J. Nonparametr. Stat. 22, 723–736 (2010)
Dette, H., Neumeyer, N., Van Keilegom, I.: A new test for the parametric form of the variance function in non-parametric regression. J. R. Statist. Soc. Ser. B 69, 903–917 (2007)
Fan, J., Gijbels, I.: Local Polynomial Modelling and Its Applications. Champan & Hall, London (1996)
Fan, J., Yao, Q.: Nonlinear Time Series. Nonparametric and Parametric Methods. Springer, New York (2003)
Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. Wiley, New Delhi (1971)
Hansen, B.E.: Uniform convergence rates for kernel estimation with dependent data. Econom. Theory 24, 726–748 (2008)
Hušková, M., Meintanis, S.G.: Goodness-of-fit tests for parametric regression models based on empirical characteristic functions. Kybernetika 45, 960–971 (2009)
Hušková, M., Meintanis, S.G.: Tests for the error distribution in nonparametric possibly heteroscedastic regression models. TEST 19, 92–112 (2010)
Koul, H.L., Song, W.: Conditional variance model checking. J. Stat. Plann. Inference 140, 1056–1072 (2010)
Liero, H.: Testing homoscedasticity in nonparametric regression. J. Nonparametr. Stat. 15, 31–51 (2003)
Neumeyer, N., Selk, L.: A note on non-parametric testing for Gaussian innovations in AR-ARCH models. J. Time Series Anal. 34, 362–367 (2013)
Neumeyer N, Van Keilegom I (2017) Bootstrap of residual processes in regression: to smooth or not to smooth? (available at arXiv:1712.02685v1)
Pardo-Fernández, J.C., Jiménez-Gamero, M.D., El Ghouch, A.: A nonparametric ANOVA-type test for regression curves based on characteristic functions. Scand. J. Stat. 42, 197–213 (2015a)
Pardo-Fernández, J.C., Jiménez-Gamero, M.D., El Ghouch, A.: Tests for the equality of conditional variance functions in nonparametric regression. Electron. J. Stat. 9, 1826–1851 (2015b)
Samarakoon, N., Song, W.: Minimum distance conditional variance function checking in heteroscedastic regression models. J. Multivariate Anal. 102, 579–600 (2011)
Samarakoon, N., Song, W.: Empirical smoothing lack-of-fit tests for variance function. J. Stat. Plann. Inference 142, 1128–1140 (2012)
Selk, L., Neumeyer, N.: Testing for a change of the innovation distribution in nonparametric autoregression: the sequential empirical process approach. Scand. J. Stat. 40, 770–788 (2013)
Wang, L., Zhou, X.-H.: Assessing the adequacy of variance function in heteroscedastic regression models. Biometrics 63, 1218–1225 (2007)
Wu, C.F.: Asymptotic theory of nonlinear least squares estimation. Ann. Stat. 9, 501–513 (1981)
Yoshihara, K.I.: Limiting behavior of U-statistics for stationary, absolutely regular processes. Z. Wahrsch. Verw. Gebiete 35, 237–252 (1976)
Yuan, K.H.: A theorem on uniform convergence of stochastic functions with applications. J. Multivariate Anal. 62, 100–109 (1997)