A model for thermal gradient and heat flow in central Chile: The role of thermal properties
Tài liệu tham khảo
Angermann, 1999, Space-geodetic estimation of the nazca-south America euler vector, Earth Planet. Sci. Lett., 171, 329, 10.1016/S0012-821X(99)00173-9
Barazangi, 1976, Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America, Geology, 4, 686, 10.1130/0091-7613(1976)4<686:SDOEAS>2.0.CO;2
Barklage, 2006
Barrientos, 2004, Crustal seismicity in central Chile, J. S. Am. Earth Sci., 16, 759, 10.1016/j.jsames.2003.12.001
Bellahsen, 2016, Crustal shortening at the sierra pie de palo (sierras pampeanas, Argentina): near-surface basement folding and thrusting, Geol. Mag., 153, 992, 10.1017/S0016756816000467
Bohlen, 1989, Origin of granulite terranes and the formation of the lowermost continental crust, Science, 244, 326, 10.1126/science.244.4902.326
Braunstein, 1985, Hollemann, wiberg & wiberg: lehrbuch der anorganischen chemie. von hollemann-wiberg. walter de gruyter verlag & co. berlin–New York 1984. xxx, 1451 s., 290 abb., 112 tab., dm 120,–. isbn 3-11-007511-3, Nachr. Chem., 33
Cahill, 1992, Seismicity and shape of the subducted nazca plate, J. Geophys. Res.: Solid Earth, 97, 17503, 10.1029/92JB00493
Cande, 1986, Late cenozoic tectonics of the southern Chile trench, J. Geophys. Res.: Solid Earth, 91, 471, 10.1029/JB091iB01p00471
Carslaw, 1959
Cermak, 1982, Thermal conductivity and specific heat of minerals and rocks, 305
Charrier, 2007, Tectonostratigraphic evolution of the andean orogen in Chile, 21
Christensen, 1995, Seismic velocity structure and composition of the continental crust: a global view, J. Geophys. Res.: Solid Earth, 100, 9761, 10.1029/95JB00259
Chulick, 2013, Seismic structure of the crust and uppermost mantle of south America and surrounding oceanic basins, J. S. Am. Earth Sci., 42, 260, 10.1016/j.jsames.2012.06.002
Davies, 1992, Physical model of source region of subduction zone volcanics, J. Geophys. Res.: Solid Earth, 97, 2037, 10.1029/91JB02571
Faccenda, 2008, Fault-induced seismic anisotropy by hydration in subducting oceanic plates, Nature, 455, 1097, 10.1038/nature07376
Farías, 2010, Crustal-scale structural architecture in central Chile based on seismicity and surface geology: implications for andean mountain building, Tectonics, 29, 10.1029/2009TC002480
Folguera, 2015, Tectonics of the argentine and chilean andes: an introduction, J. S. Am. Earth Sci., 64, 259, 10.1016/j.jsames.2015.10.003
Fountain, 1981, Exposed cross-sections through the continental crust: implications for crustal structure, petrology, and evolution, Earth Planet. Sci. Lett., 56, 263, 10.1016/0012-821X(81)90133-3
Fountain, 1990, Seismic structure of the continental crust based on rock velocity measurements from the kapuskasing uplift, J. Geophys. Res.: Solid Earth, 95, 1167, 10.1029/JB095iB02p01167
Giambiagi, 2003, Cenozoic deformation and tectonic style of the andes, between 33 and 34 south latitude, Tectonics, 22, 10.1029/2001TC001354
Grevemeyer, 2003, Heat flow over the descending nazca plate in central Chile, 32s to 41s: observations from odp leg 202 and the occurrence of natural gas hydrates, Earth Planet. Sci. Lett., 213, 285, 10.1016/S0012-821X(03)00303-0
Grevemeyer, 2006, Geothermal evidence for fluid flow through the gas hydrate stability field off central chiletransient flow related to large subduction zone earthquakes?, Geophys. J. Int., 166, 461, 10.1111/j.1365-246X.2006.02940.x
Griffin, 2009, The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications, J. Petrol., 50, 1185, 10.1093/petrology/egn033
Gutscher, 2000, Geodynamics of flat subduction: seismicity and tomographic constraints from the andean margin, Tectonics, 19, 814, 10.1029/1999TC001152
Hamza, 1996, Heat flow map of south America, Geothermics, 25, 599, 10.1016/S0375-6505(96)00025-9
Hayes, 2012, Slab1.0: a three-dimensional model of global subduction zone geometries, J. Geophys. Res.: Solid Earth, 117, 10.1029/2011JB008524
He, 2009, Radiogenic heat production in the lithosphere of sulu ultrahigh-pressure metamorphic belt, Earth Planet. Sci. Lett., 277, 525, 10.1016/j.epsl.2008.11.022
Hervé, 1988, Late paleozoic subduction and accretion in southern Chile, Episodes, 11, 183, 10.18814/epiiugs/1988/v11i3/005
Hofmeister, 2008, Thermal diffusivity of clinopyroxenes at elevated temperature, Eur. J. Mineral., 20, 537, 10.1127/0935-1221/2008/0020-1814
Isacks, 1988, Uplift of the central andean plateau and bending of the bolivian orocline, J. Geophys. Res.: Solid Earth, 93, 3211, 10.1029/JB093iB04p03211
Karato, 1993, Rheology of the upper mantle: a synthesis, Science, 260, 771, 10.1126/science.260.5109.771
Karson, 2002, Geologic structure of the uppermost oceanic crust created at fast- to intermediate-rate spreading centers, Annu. Rev. Earth Planet Sci., 30, 347, 10.1146/annurev.earth.30.091201.141132
van Keken, 2008, A community benchmark for subduction zone modeling, Phys. Earth Planet. In., 171, 10.1016/j.pepi.2008.04.015
van Keken, 2002, High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle, Geochem. Geophys. Geosyst., 3, 10.1029/2001GC000256
Krawczyk, 2006, Geophysical signatures and active tectonics at the south-central chilean margin, 171
Lachenbruch, 1970, Crustal temperature and heat production: implications of the linear heat-flow relation, J. Geophys. Res., 75, 3291, 10.1029/JB075i017p03291
Leech, 2001, Arrested orogenic development: eclogitization, delamination, and tectonic collapse, Earth Planet. Sci. Lett., 185, 149, 10.1016/S0012-821X(00)00374-5
Maksymowicz, 2015, Density-depth model of the continental wedge at the maximum slip segment of the maule mw8.8 megathrust earthquake, Earth Planet. Sci. Lett., 409, 265, 10.1016/j.epsl.2014.11.005
Mareschal, 2013, Radiogenic heat production, thermal regime and evolution of continental crust, Tectonophysics, 609, 524, 10.1016/j.tecto.2012.12.001
Marot, 2014, Flat versus normal subduction zones: a comparison based on 3-d regional traveltime tomography and petrological modeling of central Chile and western Argentina (2935s), Geophys. J. Int., 199, 1633, 10.1093/gji/ggu355
Mescua, 2016, Basement composition and basin geometry controls on upper-crustal deformation in the southern central andes (30–36 s), Geol. Mag., 1
Miao, 2014, Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks, J. Therm. Anal. Calorim., 115, 1057, 10.1007/s10973-013-3427-2
Mpodozis, 1990, The andes of Chile and Argentina, 59
Müller, 1997, Digital isochrons of the world's ocean floor, J. Geophys. Res.: Solid Earth, 102, 3211, 10.1029/96JB01781
Muller, 2008, Age, spreading rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophys. Geosyst., 9, 10.1029/2007GC001743
Muñoz, 1997, Flujo de calor, estructura termal y sismicidad en américa del sur, vol. 1, 5
Muñoz, 1993, Heat flow and temperature gradients in Chile, Studia Geophys. Geod., 37, 315, 10.1007/BF01624604
Pardo, 2002, Seismotectonic and stress distribution in the central Chile subduction zone, J. S. Am. Earth Sci., 15, 11, 10.1016/S0895-9811(02)00003-2
Parsons, 1977, An analysis of the variation of ocean floor bathymetry and heat flow with age, J. Geophys. Res., 82, 803, 10.1029/JB082i005p00803
Pasquale, 1990, Deep temperatures and lithospheric thickness along the european geotraverse, Tectonophysics, 176, 1, 10.1016/0040-1951(90)90255-7
Pasquale, 2014
Peacock, 2003, Thermal structure and metamorphic evolution of subducting slabs, 7
Rodrigo, 2009, Seismic analysis and distribution of a bottom-simulating reflector (bsr) in the chilean margin offshore of valdivia (40 s), J. S. Am. Earth Sci., 27, 1, 10.1016/j.jsames.2008.11.001
Rudnick, 1995, Nature and composition of the continental crust: a lower crustal perspective, Rev. Geophys., 33, 267, 10.1029/95RG01302
Rudnick, 2003, Composition of the continental crust, Treatise on Geochemistry, 3, 659
Rudnick, 1998, Thermal structure, thickness and composition of continental lithosphere, Chem. Geol., 145, 395, 10.1016/S0009-2541(97)00151-4
Russell, 2001, Heat production and heat flow in the mantle lithosphere, slave craton, Canada, Phys. Earth Planet. In., 123, 27, 10.1016/S0031-9201(00)00201-6
Rybach, 1988, Determination of heat production rate, 125
Rykart, 1995
Sánchez, 2017, Thermo-mechanical analysis of the andean lithosphere over the chilean-pampean flat-slab region, J. S. Am. Earth Sci.
Saxena, 1996, Earth mineralogical model: Gibbs free energy minimization computation in the system MgO−FeO−SiO2, Geochem. Cosmochim. Acta, 60, 2379, 10.1016/0016-7037(96)00096-8
Scholz, 1990
Sigismondi, 2012, 1
Smalley, 1993, Basement seismicity beneath the andean precordillera thin-skinned thrust belt and implications for crustal and lithospheric behavior, Tectonics, 12, 63, 10.1029/92TC01108
Spinelli, 2016, The thermal effect of fluid circulation in the subducting crust on slab melting in the Chile subduction zone, Earth Planet. Sci. Lett., 434, 101, 10.1016/j.epsl.2015.11.031
Spinelli, 2009, Links between fluid circulation, temperature, and metamorphism in subducting slabs, Geophys. Res. Lett., 36, 10.1029/2009GL038706
Springer, 1998, Heat-flow density across the central andean subduction zone, Tectonophysics, 291, 123, 10.1016/S0040-1951(98)00035-3
Stauder, 1973, Mechanism and spatial distribution of chilean earthquakes with relation to subduction of the oceanic plate, J. Geophys. Res., 78, 5033, 10.1029/JB078i023p05033
Stein, 1992, A model for the global variation in oceanic depth and heat flow with lithospheric age, Nature, 359, 123, 10.1038/359123a0
Suárez, 2014, Complementando el conocimiento hidrogeológico mediante sistemas distribuidos de temperatura, vol. 12, 9
Syracuse, 2010, The global range of subduction zone thermal models, Phys. Earth Planet. In., 183, 73, 10.1016/j.pepi.2010.02.004
Tassara, 2012, Anatomy of the andean subduction zone: three-dimensional density model upgraded and compared against global-scale models, Geophys. J. Int., 189, 161, 10.1111/j.1365-246X.2012.05397.x
Tassara, 2006, Three-dimensional density model of the nazca plate and the andean continental margin, J. Geophys. Res.: Solid Earth, 111, 10.1029/2005JB003976
Turcotte, 2002, vol. 139
Uyeda, 1979, Back-arc opening and the mode of subduction, J. Geophys. Res.: Solid Earth, 84, 1049, 10.1029/JB084iB03p01049
Uyeda, 1978, Report of heat flow measurements in Chile, Treatise on Geophysics, 6, 217
Uyeda, 1982, Terrestrial heat flow in western south America, Tectonophysics, 83, 63, 10.1016/0040-1951(82)90007-5
Vilà, 2010, Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling, Tectonophysics, 490, 152, 10.1016/j.tecto.2010.05.003
Villar-Muñoz, 2014, Heat flow in the southern Chile forearc controlled by large-scale tectonic processes, Geo Mar. Lett., 34, 185, 10.1007/s00367-013-0353-z
Völker, 2015, Water input and water release from the subducting nazca plate along southern central Chile (33 s–46 s), Geochem. Geophys. Geosyst., 16, 1825, 10.1002/2015GC005766
Wada, 2009, Common depth of slab-mantle decoupling: reconciling diversity and uniformity of subduction zones, Geochem. Geophys. Geosyst., 10, 10.1029/2009GC002570
Wada, 2008, Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization, J. Geophys. Res.: Solid Earth, 113, 10.1029/2007JB005190
White, 2014
Whittington, 2009, Temperature-dependent thermal diffusivity of the earths crust and implications for magmatism, Nature, 458, 319, 10.1038/nature07818
Zienkiewicz, 2000, vol. 2
Zoth, 1988, Appendix, 449