A model for the C-A-S-H gel formed in alkali-activated slag cements

Journal of the European Ceramic Society - Tập 31 Số 12 - Trang 2043-2056 - 2011
F. Puertas1,2, Marta Palacios3, Hegoi Manzano4,5, Jorge S. Dolado5,2, A. Rico6, J. Rodrı́guez6
1Instituto de Ciencias de La Construcción Eduardo Torroja (IETcc-CSIC), Madrid, Spain
2Nanostructured and Eco-efficient Materials for Construction Unit, Associated Unit Labein-Tecnalia/CSIC.IETcc, Spain
3Institute for Building Materials-ETH Zurich, Switzerland
4Concrete Sustainability Hub, Massachusetts Institute of Technology, Cambridge, MA, USA
5Labein-Tecnalia, Derio, Bilbao, Spain
6Universidad Rey Juan Carlos, Móstoles, Madrid, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fernández-Jiménez, 1999, Alkali-activated slag mortars: mechanical strength behaviour, Cement and Concrete Research, 29, 593, 10.1016/S0008-8846(99)00154-4

Brough, 2002, Sodium silicate-based, alkali-activated slag mortars. Part I. Strength, hydration and microstructure, Cement and Concrete Research, 32, 865, 10.1016/S0008-8846(02)00717-2

Bakharev, 2002, Sulfate attack on alkali-activated slag concrete, Cement and Concrete Research, 32, 211, 10.1016/S0008-8846(01)00659-7

Bakharev, 2003, Resistance of alkali-activated slag concrete to acid attack, Cement and Concrete Research, 33, 1607, 10.1016/S0008-8846(03)00125-X

Puertas, 2002, Alkaline cement mortars. Chemical resistance to sulfate and seawater attack, Materiales de Construccion, 52, 55, 10.3989/mc.2002.v52.i267.326

Puertas, 2006, Carbonation process of alkali-activated slag mortars, Journal of Materials Science, 41, 3071, 10.1007/s10853-005-1821-2

Bakharev, 2001, Resistance of alkali-activated slag concrete to carbonation, Cement and Concrete Research, 31, 1277, 10.1016/S0008-8846(01)00574-9

Palacios, 2006, Carbonation of alkali-activated slag pastes, Journal of American Ceramic Society, 89, 3211, 10.1111/j.1551-2916.2006.01214.x

Palacios, 2007, Influence of shrinkage-reducing admixture on the properties of alkali-activated slag mortars and pastes, Cement and Concrete Research, 37, 691, 10.1016/j.cemconres.2006.11.021

Fernández-Jiménez, 2003, Structure of calcium silicate hydrates formed in alkaline activated slag. Influence of the type of alkaline activator, Journal of American Ceramic Society, 86, 1389, 10.1111/j.1151-2916.2003.tb03481.x

Lecomte, 2006, (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement, Journal of the European Ceramic Society, 26, 3789, 10.1016/j.jeurceramsoc.2005.12.021

Richardson, 2008, The calcium silicate hydrates, Cement and Concrete Research, 38, 137, 10.1016/j.cemconres.2007.11.005

Puertas, 2004, Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate, Cement and Concrete Research, 34, 139, 10.1016/S0008-8846(03)00254-0

Dolado, 2007, A molecular dynamic study of cementitious calcium silicate hydrate (C-S-H) gels, Journal of American Ceramic Society, 90, 3938, 10.1111/j.1551-2916.2007.01984.x

Manzano, 2009, Structural and elastic properties of the main species present in the cement paste, Acta Materialia, 57, 1666, 10.1016/j.actamat.2008.12.007

Pellenq, 2009, A realistic molecular model of cement hydrates, Proceedings of the National Academy of Sciences, 106, 16102, 10.1073/pnas.0902180106

Constantinides, 2007, The nanogranular nature of C-S-H, Journal of the Mechanics and Physics of Solids, 55, 64, 10.1016/j.jmps.2006.06.003

Leach, 2001

Gmira, 2004, Microscopic physical basis of the poromechanical behavior of cement-based materials, Materials and Structures, 37, 3, 10.1617/14101

Lewis, 1985, Potential models for ionic oxides, Journal of Physics C-Solid State Physics, 18, 1149, 10.1088/0022-3719/18/6/010

Du, 2004, A combined density functional theory and interatomic potential-based simulation study of the hydration of nano-particulate silicate surface, Surface Science, 554, 193, 10.1016/j.susc.2004.02.001

Manzano, 2010, X-ray spectra and theoretical elastic properties of crystalline calcium silicate hydrates: comparison with cement hydrated gels, Materiales de Construcción, 60, 7, 10.3989/mc.2010.57310

Manzano, 2007, Mechanical properties of crystalline calcium-silicate-hydrates: comparison with cementitious C-S-H gels, Journal Physica Status Solidi a-Applications and Materials Science, 204, 1775, 10.1002/pssa.200675359

Gale, 1994, Derivation of interatomic potentials for microporous aluminophosphates from the structure and properties of berlinite, Journal of the Chemical Society-Faraday Transactions, 90, 3175, 10.1039/ft9949003175

Higgins, 2002, Modelling the effect of water on cation exchange in zeolite A, Journal of Materials Chemistry, 12, 124, 10.1039/b104069n

Bonaccorsi, 2005, The crystal structure of tobermorite 14 A (Plombierite), a C-S-H phase, Journal of American Ceramic Society, 88, 505, 10.1111/j.1551-2916.2005.00116.x

Merlino, 2001, The real structure of tobermorite 11 angstrom: normal and anomalous forms, OD character and polytypic modifications, European Journal of Mineralogy, 13, 577, 10.1127/0935-1221/2001/0013-0577

Manzano, 2009, Aluminum incorporation to dreierketten silicate chains, Journal of Physical Chemistry B, 113, 10.1021/jp804867u

Manzano, 2008, A molecular dynamics study of the aluminosilicate chains structure in Al-rich calcium silicate hydrated (C-S-H) gels, Physica Status Solidi a-Applications and Materials Science, 205, 1324, 10.1002/pssa.200778175

Sun, 2006, The role of Al in C-S-H: NMR XRD, and compositional results for precipitated samples, Cement and Concrete Research, 36, 18, 10.1016/j.cemconres.2005.03.002

Richardson, 1993, Location of aluminium in substituted calcium silicate hydrate (C-S-H) gels as determined by Si-29 and Al-27 NMR and EELS, Journal of the American Ceramic Society, 76, 2285, 10.1111/j.1151-2916.1993.tb07765.x

Andersen, 2003, Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated Portland cements: a high-field Al-27 and Si-29 MAS NMR, Inorganic Chemistry, 42, 2280, 10.1021/ic020607b

Faucon, 1998, Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated Portland cements: a high-field Al-27 and Si-29 MAS NMR, Journal of the American Chemical Society, 120, 12075, 10.1021/ja9806940

Gale, 2003, The general utility lattice program (GULP), Molecular Simulation, 29, 291, 10.1080/0892702031000104887

Kröner, 1972

Kirkpatrick, 1994, An in introduction to 27Al and 29Si NMR spectroscopy of cements and concretes, 55

Cincotto, 2003, Effect of different activators type and dosages and relation to autogenous shrinkage of activated blast furnace slag cement, 1878

Skibsted, 1998, Quantitative aspects of 27Al MAS NMR of calcium aluminoferrites, Advances in Cement Based Materials, 7, 57, 10.1016/S1065-7355(97)00017-5

Brunet, 2010, Characterization by solid-state NMR and selective dissolution techniques of anhydrous and hydrated CEM V cement pastes, Cement and Concrete Research, 40, 208, 10.1016/j.cemconres.2009.10.005

Oldfied, 1983, High-resolution NMR of inorganic solids. Influence of magnetic centers on magic-angle sample-spinning lineshapes in some natural aluminosilicates, Journal Magnetic Resonance, 51, 325

Palacios M. Empleo de aditivos orgánicos en la mejora de las propiedades de cementos y morteros de escorias activadas alcalinamente (Spanish). PhD. Autonoma University of Madrid; 2006.

Constantinidis, 2007, The nanogranular origin of C-S-H, Journal of the Mechanics and Physics of Solids, 55, 64, 10.1016/j.jmps.2006.06.003

Vandamme, 2009, Nanogranular of concrete creep, Proceedings of the National Academy of Sciences of the United States of America, 106, 10552, 10.1073/pnas.0901033106

Skinner, 2010, Nanostructure of calcium silicate hydrates in cements, Physical Review Letters, 104, 195502, 10.1103/PhysRevLett.104.195502

Song, 2008, A phase diagram for jammed matter, Nature, 453, 629, 10.1038/nature06981

Chen, 2010, A coupled nanoindentation/SEM-EDS study on low water/cement ratio portland cement paste: evidence for C-S-H/Ca(OH)2 nanocomposites, Journal of American Ceramic Society, 93, 1484, 10.1111/j.1551-2916.2009.03599.x

de Leeuw, 1995, Atomistic simulation of the effect of dissociative adsorption of water on the surface structure and stability of calcium and magnesium oxides, Journal of Physical Chemistry, 99, 17219, 10.1021/j100047a028

De Leeuw, 1998, Molecular-dynamics simulation of MgO surfaces in liquid water using a shell-model potential for water, Physical Review B, 59, 13901, 10.1103/PhysRevB.58.13901

Schroder, 1992, Bridging hydroxyl groups in zeolitic catalysts: a computer simulation of their structure, vibrational properties and acidity in protonated faujasites (HY zeolites), Chemical Physics Letters, 188, 320, 10.1016/0009-2614(92)90030-Q