A model for sentiment and emotion analysis of unstructured social media text
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bikel, D. M., & Sorensen, J. (2007). If we want your opinion. In: International conference on semantic computing (ICSC 2007) (pp. 493–500). doi: 10.1109/ICSC.2007.81 .
Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems, 28(2), 15–21. doi: 10.1109/MIS.2013.30 .
Chen, R., & Xu, W. (2016). The determinants of online customer ratings: A combined domain ontology and topic text analytics approach. Electronic Commerce Research. doi: 10.1007/s10660-016-9243-6 .
Ding, X., Liu, B., & Yu, P. S. (2008). A holistic lexicon-based approach to opinion mining. In: Proceedings of the 2008 international conference on web search and data mining (pp. 231–240). doi: 10.1145/1341531.1341561 .
Esuli, A., & Sebastiani, F. (2006). Sentiwordnet: A publicly available lexical resource for opinion mining. In: Proceedings of 5th language resources and evaluation (Vol. 6, pp. 417–422).
Fei, G., Liu, B., Hsu, M., Castellanos, M., & Ghosh, R. (2012). A dictionary-based approach to identifying aspects implied by adjectives for opinion mining. In: Proceedings of 24th international conference on computational linguistics (p. 309).
Feldman, R., Fresco, M., Goldenberg, J., Netzer, O., & Ungar, L. (2007). Extracting product comparisons from discussion boards. In: Seventh IEEE international conference on data mining (ICDM 2007) (pp. 469–474). doi: 10.1109/ICDM.2007.27 .
Godbole, N., Srinivasaiah, M., & Skiena, S. (2007). Large-scale sentiment analysis for news and blogs. Proceedings of the international conference on weblogs and social media (ICWSM), 7(21), 219–222.
Hamouda, A., & Rohaim, M. (2011). Reviews classification using sentiwordnet lexicon. In: World congress on computer science and information technology.
Jindal, N., & Liu, B. (2006). Mining comparative sentences and relations. In: Proceedings of the 21st national conference on artificial intelligence (Vol. 2, pp. 1331–1336).
Van de Kauter, M., Breesch, D., & Hoste, V. (2015). Fine-grained analysis of explicit and implicit sentiment in financial news articles. Expert Systems with Applications, 42(11), 4999–5010. doi: 10.1016/j.eswa.2015.02.007 .
Li, J., Fong, S., Zhuang, Y., & Khoury, R. (2015). Hierarchical classification in text mining for sentiment analysis of online news. Soft Computing, 20, 3411–3420. doi: 10.1007/s00500-015-1812-4 .
Li, Y., Qin, Z., Xu, W., & Guo, J. (2015). A holistic model of mining product aspects and associated sentiments from online reviews. Multimedia Tools and Applications, 74(23), 10177–10194. doi: 10.1007/s11042-014-2158-0 .
Liu, B. (2010). Sentiment analysis and subjectivity. Handbook of Natural Language Processing, 2, 627–666.
Liu, B. (2011). Opinion mining and sentiment analysis. In: Web data mining: Exploring hyperlinks, contents, and usage data (pp. 459–526). doi: 10.1007/978-3-642-19460-3_11 .
Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1–167. doi: 10.2200/S00416ED1V01Y201204HLT016 .
Liu, P., Gulla, J. A., & Zhang, L. (2016). Dynamic topic-based sentiment analysis of large-scale online news. In: Proceedings of the 17th international conference on web information systems engineering (pp. 3–18). doi: 10.1007/978-3-319-48743-4_1 .
Ma, Y., Chen, G., & Wei, Q. (2017). Finding users preferences from large-scale online reviews for personalized recommendation. Electronic Commerce Research, 17(1), 3–29. doi: 10.1007/s10660-016-9240-9 .
Mo, S. Y. K., Liu, A., & Yang, S. Y. (2016). News sentiment to market impact and its feedback effect. Environment Systems and Decisions, 36(2), 158–166. doi: 10.1007/s10669-016-9590-9 .
Montoyo, A., MartíNez-Barco, P., & Balahur, A. (2012). Subjectivity and sentiment analysis: An overview of the current state of the area and envisaged developments. Decision Support Systems, 53(4), 675–679. doi: 10.1016/j.dss.2012.05.022 .
Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., & Ngo, D. C. L. (2015). Text mining of news-headlines for forex market prediction: A multi-layer dimension reduction algorithm with semantics and sentiment. Expert Systems with Applications, 42(1), 306–324. doi: 10.1016/j.eswa.2014.08.004 .
Ohana, B. (2009). Opinion mining with the sentwordnet lexical resource. M.Sc. dissertation, Dublin Institute of Technology.
Pang, B., & Lee, L. (2004) A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd annual meeting on association for computational linguistics (p. 271). doi: 10.3115/1218955.1218990 .
Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135. doi: 10.1561/1500000011 .
Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: Sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 conference on empirical methods in natural language processing (Vol. 10, pp. 79–86). doi: 10.3115/1118693.1118704 .
Parkhe, V., & Biswas, B. (2016). Sentiment analysis of movie reviews: Finding most important movie aspects using driving factors. Soft Computing, 20(9), 3373–3379. doi: 10.1007/s00500-015-1779-1 .
Peng, J., Choo, K. K. R., & Ashman, H. (2016). Astroturfing detection in social media: Using binary n-gram analysis for authorship attribution. In: Proceedings of the 15th IEEE international conference on trust, security and privacy in computing and communications (TrustCom 2016) (pp. 121–1286).
Peng, J., Choo, K. K. R., & Ashman, H. (2016). Bit-level n-gram based forensic authorship analysis on social media: Identifying individuals from linguistic profiles. Journal of Network and Computer Applications, 70, 171–182. doi: 10.1016/j.jnca.2016.04.001 .
Peng, J., Detchon, S., Choo, K. K. R., & Ashman, H. (2016). Astroturfing detection in social media: A binary n-gram-based approach. Concurrency and Computation: Practice and Experience. doi: 10.1002/cpe.4013 .
Pröllochs, N., Feuerriegel, S., & Neumann, D. (2015). Enhancing sentiment analysis of financial news by detecting negation scopes. In: Proceedings of the 48th Hawaii international conference on system sciences (HICSS) (pp. 959–968). doi: 10.1109/HICSS.2015.119 .
Robinson, R., Goh, T. T., & Zhang, R. (2012). Textual factors in online product reviews: A foundation for a more influential approach to opinion mining. Electronic Commerce Research, 12(3), 301–330. doi: 10.1007/s10660-012-9095-7 .
Rout, J., Dalmia, A., Choo, K. K. R., Bakshi, S., & Jena, S. (2017). Revisiting semi-supervised learning for online deceptive review detection. IEEE Access, 5(1), 1319–1327. doi: 10.1109/ACCESS.2017.2655032 .
Rout, J., Singh, S., Jena, S., & Bakshi, S. (2017). Deceptive review detection using labeled and unlabeled data. Multimedia Tools and Applications, 76(3), 3187–3211. doi: 10.1007/s11042-016-3819-y .
Sadegh, M., Ibrahim, R., & Othman, Z. A. (2012). Opinion mining and sentiment analysis: A survey. International Journal of Computers & Technology, 2(3), 171–178.
Song, L., Lau, R. Y. K., Kwok, R. C. W., Mirkovski, K., & Dou, W. (2017). Who are the spoilers in social media marketing? Incremental learning of latent semantics for social spam detection. Electronic Commerce Research, 17(1), 51–81. doi: 10.1007/s10660-016-9244-5 .
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational linguistics, 37(2), 267–307. doi: 10.1162/COLI_a_00049 .
Tang, H., Tan, S., & Cheng, X. (2009). A survey on sentiment detection of reviews. Expert Systems with Applications, 36(7), 10760–10773. doi: 10.1016/j.eswa.2009.02.063 .
Turney, P.D. (2002). Thumbs up or thumbs down?: Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th annual meeting on association for computational linguistics (pp. 417–424). doi: 10.3115/1073083.1073153 .
Wang, D., Li, J., Xu, K., & Wu, Y. (2017). Sentiment community detection: Exploring sentiments and relationships in social networks. Electronic Commerce Research, 17(1), 103–132. doi: 10.1007/s10660-016-9233-8 .