A mixture of mixture models for a classification problem: The unity measure error

Computational Statistics and Data Analysis - Tập 51 - Trang 2573-2585 - 2007
Marco Di Zio1, Ugo Guarnera1, Roberto Rocci2
1Istituto Nazionale di Statistica, via Cesare Balbo 16, 00184 Roma, Italy
2Università di Tor Vergata, via Columbia 2, 00133 Roma, Italy

Tài liệu tham khảo

Azzalini, 2003, Distributions generated by perturbation of symmetry with emphasis on a multivariate skew-t distribution, J. Roy. Statist. Soc. Ser. B, 65, 367, 10.1111/1467-9868.00391 Biernacki, 2003, Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models, Comput. Statist. Data Anal., 41, 561, 10.1016/S0167-9473(02)00163-9 Cirianni, A., Di Zio, M., Luzi, O., Seeber, A.C., 2000. The new integrated data procedure for the Italian Labour Cost survey: measuring the effects on data of combined techniques. Proceedings of the International Conference on Establishment Surveys II (ICES), June 17–21, 2000, Buffalo, USA. De Waal, 2003, Solving the error localization problem by means of vertex generation, Surv. Methodol., 1, 71 Di Zio, 2005, Editing systematic unity measure errors through mixture modelling, Surv. Methodol., 31, 53 Fellegi, 1976, A systematic approach to edit and imputation, J. Amer. Statist. Assoc., 71, 17, 10.2307/2285726 Gordon, 1999 Granquist, 1995, Improving the traditional editing process Hastie, 1996, Discriminant analysis by Gaussian mixtures, J. Roy. Statist. Soc. Ser. B, 58, 155 Hathaway, 1986, Another interpretation of the EM algorithm for mixture distributions, Statist. Probab. Lett., 4, 53, 10.1016/0167-7152(86)90016-7 Keribin, 2000, Consistent estimation of the order of mixture models, Sankya The Indian J. Statist., 62, 49 Marron, 1992, Exact mean integrated squared error, Ann. Statist., 20, 712, 10.1214/aos/1176348653 McLachlan, 2000 Meng, 1993, Maximum likelihood estimation via the ECM algorithm: a general framework, Biometrika, 80, 267, 10.1093/biomet/80.2.267 R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, 2004. Teicher, 1963, Identifiability of finite mixtures, Ann. Math. Statist., 34, 1265, 10.1214/aoms/1177703862 Willse, 1999, Identifiable finite mixtures of location models for clustering mixed-mode data, Statist. Comput., 9, 111, 10.1023/A:1008842432747 Yakowitz, 1968, On the identifiability of finite mixtures, Ann. Math. Statist., 39, 209, 10.1214/aoms/1177698520