Một mạng lưới thích nghi đối kháng hỗn hợp cho chẩn đoán lỗi thông minh

Journal of Intelligent Manufacturing - Tập 33 - Trang 2207-2222 - 2021
Jinyang Jiao1, Ming Zhao2, Jing Lin1, Kaixuan Liang2, Chuancang Ding2
1School of Reliability and Systems Engineering, Beihang University, Beijing, China
2State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China

Tóm tắt

Phía sau sự xuất sắc của các mô hình chẩn đoán sâu, vấn đề sự khác biệt phân phối giữa dữ liệu huấn luyện nguồn và dữ liệu kiểm tra mục tiêu đang dần được quan tâm nhằm đáp ứng các yêu cầu chẩn đoán thiết thực và khẩn cấp hơn. Do đó, các thuật toán thích nghi miền tiên tiến đã được giới thiệu vào lĩnh vực chẩn đoán lỗi để giải quyết vấn đề này. Tuy nhiên, trong việc thực hiện thích nghi miền, hầu hết các phương pháp chẩn đoán hiện có chỉ tập trung vào việc giảm thiểu độ phân kỳ phân phối biên mà không xem xét sự khác biệt trong phân phối điều kiện cùng lúc. Trong bài báo này, chúng tôi trình bày một khung thông minh dựa trên mạng lưới thích nghi đối kháng hỗn hợp (MAAN) cho chẩn đoán lỗi liên miền của máy móc. Trong phương pháp này, sự khác biệt của phân phối biên và phân phối điều kiện được giảm cùng nhau thông qua chiến lược học tập đối kháng, ngoài ra, một yếu tố thích ứng đơn giản cũng được cung cấp để xác định trọng số tương đối của hai phân phối một cách linh hoạt. Các thử nghiệm rộng rãi được thực hiện trên hai loại thiết bị cơ khí, cụ thể là hộp số hành tinh và vòng bi lăn, nhằm xác thực phương pháp đã đề xuất. Bằng chứng thực nghiệm cho thấy mô hình được đề xuất vượt trội hơn so với các phương pháp chẩn đoán học sâu và thích nghi miền sâu phổ biến.

Từ khóa

#chẩn đoán lỗi #thích nghi miền #mạng lưới đối kháng #học sâu #thiết bị cơ khí

Tài liệu tham khảo

Borgwardt, K. M., Gretton, A., Rasch, M. J., Kriegel, H., Sch, O., Lkopf, B., & Smola, A. J. (2006). Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics, 22(14), e49–e57 Chen, X., Zhang, B., & Gao, D. (2020). Bearing fault diagnosis base on multi-scale CNN and LSTM model. Journal of Intelligent Manufacturing, 1–17. Cheng, C., Zhou, B., Ma, G., Wu, D., & Yuan, Y. (2019). Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F. C. C. O., et al. (2016). Domain-adversarial training of neural networks. The Journal of Machine Learning Research, 17(1), 2030–2096 Guo, L., Lei, Y., Xing, S., Yan, T., & Li, N. (2019). Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data. IEEE Transactions on Industrial Electronics, 66(9), 7316–7325. https://doi.org/10.1109/TIE.2018.2877090 Han, T., Liu, C., Yang, W., & Jiang, D. (2019). A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults. Knowledge-Based Systems, 165, 474–487 Han, T., Liu, C., Yang, W., & Jiang, D. (2020). Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application. ISA Transactions, 97, 269–281 He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In: Proceedings of IEEE conference computer vision and pattern recognition, pp 770–778. Ioffe, S., & Szegedy, C. (2015). Batch normalization: accelerating deep network training by reducing internal covariate shift. Jia, F., Lei, Y., Lin, J., Zhou, X., & Lu, N. (2016). Deep neural networks: a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mechanical Systems and Signal Processing, 72, 303–315 Jiao, J., Zhao, M., Lin, J., & Ding, C. (2019). Deep coupled dense convolutional network with complementary data for intelligent fault diagnosis. IEEE Transactions on Industrial Electronics, 66(12), 9858–9867. https://doi.org/10.1109/TIE.2019.2902817 Jiao, J., Zhao, M., Lin, J., & Liang, K. (2020a). Residual joint adaptation adversarial network for intelligent transfer fault diagnosis. Mechanical Systems and Signal Processing, 145, 106962 Jiao, J., Zhao, M., Lin, J., & Liang, K. (2020b). A comprehensive review on convolutional neural network in machine fault diagnosis. Neurocomputing, 417(5), 36–63 Jiao, J., Zhao, M., & Lin, J. (2020c). Unsupervised adversarial adaptation network for intelligent fault diagnosis. IEEE Transactions on Industrial Electronics, 67(11), 9904–9913. https://doi.org/10.1109/TIE.2019.2956366 Jiao, J., Zhao, M., Lin, J., & Ding, C. (2020d). Classifier inconsistency based domain adaptation network for partial transfer intelligent diagnosis. IEEE Transactions on Industrial Informatics, 16(9), 5965–5974. https://doi.org/10.1109/TII.2019.2956294 Jiao, J., Zhao, M., Lin, J., & Zhao, J. (2018). A multivariate encoder information based convolutional neural network for intelligent fault diagnosis of planetary gearboxes. Knowledge-Based Systems, 160, 237–250 Lee, C., Batra, T., Baig, M. H., & Ulbricht, D. (2019). Sliced wasserstein discrepancy for unsupervised domain adaptation. In: Proceedings of IEEE conference computer vision and pattern recognition, pp 10277–10287. Li, J., Li, X., He, D., & Qu, Y. (2020a). Unsupervised rotating machinery fault diagnosis method based on integrated SAE--DBN and a binary processor. Journal of Intelligent Manufacturing, 1–18. Li, X., Jia, X., Zhang, W., Ma, H., Luo, Z., & Li, X. (2020b). Intelligent cross-machine fault diagnosis approach with deep auto-encoder and domain adaptation. Neurocomputing, 383, 235–247 Li, X., Zhang, W., Ding, Q., & Sun, J. (2019). Multi-Layer domain adaptation method for rolling bearing fault diagnosis. Signal Processing, 157, 180–197 Liu, Z., Lu, B., Wei, H., Li, X., & Chen, L. (2019a). Fault diagnosis for electromechanical drivetrains using a joint distribution optimal deep domain adaptation approach. IEEE Sensors Journal, 19(24), 12261–12270 Liu, Z., Lu, B., Wei, H., Chen, L., Li, X., & Rätsch, M. (2019b). Deep adversarial domain adaptation model for bearing fault diagnosis. IEEE Transactions on Systems, Man, and Cybernetics: Systems. https://doi.org/10.1109/TSMC.2019.2932000 Long, M., Wang, J., Ding, G., Sun, J., & Yu, P. S. (2013). Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE international conference on computer vision, pp 2200–2207. Lu, W., Liang, B., Cheng, Y., Meng, D., Yang, J., & Zhang, T. (2017). Deep model based domain adaptation for fault diagnosis. IEEE Transactions on Industrial Electronics, 64(3), 2296–2305. https://doi.org/10.1109/TIE.2016.2627020 Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In: Proceedings of 27nd international conference on machine learning. Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359 Pei, Z., Cao, Z., Long, M., & Wang, J. (2018). Multi-adversarial domain adaptation. Qin, Y., Wang, X., & Zou, J. (2019). The optimized deep belief networks with improved logistic sigmoid units and their application in fault diagnosis for planetary gearboxes of wind turbines. IEEE Transactions on Industrial Electronics, 66(5), 3814–3824. https://doi.org/10.1109/TIE.2018.2856205 Smith, W. A., & Randall, R. B. (2015). Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study. Mechanical Systems and Signal Processing, 64, 100–131 Sun, B., & Saenko, K. (2016). Deep coral: Correlation alignment for deep domain adaptation. In: Proceedings of European conference on computer vision, pp 443–450. Wang, H., Bai, X., Tan, J., & Yang, J. (2020). Deep prototypical networks based domain adaptation for fault diagnosis. Journal of Intelligent Manufacturing, 1–11. Xu, K., Li, S., Jiang, X., An, Z., Wang, J., & Yu, T. (2020). A renewable fusion fault diagnosis network for the variable speed conditions under unbalanced samples. Neurocomputing, 379, 12–29 Yang, B., Lei, Y., Jia, F., & Xing, S. (2019). An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings. Mechanical Systems and Signal Processing, 122, 692–706 Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? In: Advances in neural information processing systems, pp 3320–3328. Yu, C., Wang, J., Chen, Y., & Huang, M. (2019). Transfer learning with dynamic adversarial adaptation network. Zellinger, W., Grubinger, T., Lughofer, E., Natschl A Ger, T., & Saminger-Platz, S. (2017). Central moment discrepancy (cmd) for domain-invariant representation learning. Zhang, M., Wang, D., Lu, W., Yang, J., Li, Z., & Liang, B. (2019). A deep transfer model with wasserstein distance guided multi-adversarial networks for bearing fault diagnosis under different working conditions. IEEE Access, 7, 65303–65318. https://doi.org/10.1109/ACCESS.2019.2916935 Zhang, W., Li, C., Peng, G., Chen, Y., & Zhang, Z. (2018). A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mechanical Systems and Signal Processing, 100, 439–453 Zhang, W., Peng, G., Li, C., Chen, Y., & Zhang, Z. (2017). A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals. Sensors, 17(2), 425 Zhao, K., Jiang, H., Wu, Z., & Lu, T. (2020). A novel transfer learning fault diagnosis method based on Manifold Embedded Distribution Alignment with a little labeled data. Journal of Intelligent Manufacturing, 1–15. Zhao, R., Wang, D., Yan, R., Mao, K., Shen, F., & Wang, J. (2018). Machine health monitoring using local feature-based gated recurrent unit networks. IEEE Transactions on Industrial Electronics, 65(2), 1539–1548. https://doi.org/10.1109/TIE.2017.2733438 Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213–237