A minimal growth medium for the basidiomycete Pleurotus sapidus for metabolic flux analysis
Tóm tắt
Pleurotus sapidus secretes a huge enzymatic repertoire including hydrolytic and oxidative enzymes and is an example for higher basidiomycetes being interesting for biotechnology. The complex growth media used for submerged cultivation limit basic physiological analyses of this group of organisms. Using undefined growth media, only little insights into the operation of central carbon metabolism and biomass formation, i.e., the interplay of catabolic and anabolic pathways, can be gained. The development of a chemically defined growth medium allowed rapid growth of P. sapidus in submerged cultures. As P. sapidus grew extremely slow in salt medium, the co-utilization of amino acids using 13C-labelled glucose was investigated by gas chromatography–mass spectrometry (GC-MS) analysis. While some amino acids were synthesized up to 90% in vivo from glucose (e.g., alanine), asparagine and/or aspartate were predominantly taken up from the medium. With this information in hand, a defined yeast free salt medium containing aspartate and ammonium nitrate as a nitrogen source was developed. The observed growth rates of P. sapidus were well comparable with those previously published for complex media. Importantly, fast growth could be observed for 4 days at least, up to cell wet weights (CWW) of 400 g L-1. The chemically defined medium was used to carry out a 13C-based metabolic flux analysis, and the in vivo reactions rates in the central carbon metabolism of P. sapidus were investigated. The results revealed a highly respiratory metabolism with high fluxes through the pentose phosphate pathway and TCA cycle. The presented chemically defined growth medium enables researchers to study the metabolism of P. sapidus, significantly enlarging the analytical capabilities. Detailed studies on the production of extracellular enzymes and of secondary metabolites of P. sapidus may be designed based on the reported data.
Tài liệu tham khảo
Ichinose H: Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol Appl Biochem 2013, 60: 71–81. 10.1002/bab.1061
Zelena K, Hardebusch B, Hülsdau B, Berger RG, Zorn H: Generation of norisoprenoid flavors from carotenoids by fungal peroxidases. J Agric Food Chem 2009, 57: 9951–9955. 10.1021/jf901438m
Krings U, Lehnert N, Fraatz MA, Hardebusch B, Zorn H, Berger RG: Autoxidation versus biotransformation of α -pinene to flavors with Pleurotus sapidus : regioselective hydroperoxidation of α -pinene and stereoselective dehydrogenation of verbenol. J Agric Food Chem 2009, 57: 9944–9950. 10.1021/jf901442q
Fraatz MA, Riemer SJL, Stöber R, Kaspera R, Nimtz M, Berger RG, Zorn H: A novel oxygenase from Pleurotus sapidus transforms valencene to nootkatone. J Mol Catal B Enzym 2009, 61: 202–207. 10.1016/j.molcatb.2009.07.001
Bhandari DR, Shen T, Römpp A, Zorn H, Spengler B: Analysis of cyathane-type diterpenoids from Cyathus striatus and Hericium erinaceus by high-resolution MALDI MS imaging. Anal Bioanal Chem 2014, 406: 695–704. 10.1007/s00216-013-7496-7
Bouws H, Wattenberg A, Zorn H: Fungal secretomes—nature’s toolbox for white biotechnology. Appl Microbiol Biotechnol 2008, 80: 381–388. 10.1007/s00253-008-1572-5
Bosse AK, Fraatz MA, Zorn H: Formation of complex natural flavors by biotransformation of apple pomace with basidiomycetes. Food Chem 2013, 141: 2952–2959. 10.1016/j.foodchem.2013.05.116
Tlecuitl-Beristain S, Sánchez C, Loera O, Robson GD, Díaz-Godínez G: Laccases of Pleurotus ostreatus observed at different phases of its growth in submerged fermentation: production of a novel laccase isoform. Microbiol Res 2008, 112: 1080–1084.
Dong Q-L, Zhao X-M, Ma H-W, Xing X-Y, Sun N-X: Metabolic flux analysis of the two astaxanthin-producing microorganisms Haematococcus pluvialis and Phaffia rhodozyma in the pure and mixed cultures. Biotechnol J 2006, 1: 1283–1292. 10.1002/biot.200600060
Cannizzaro C, Christensen B, Nielsen J, von Stockar U: Metabolic network analysis on Phaffia rhodozyma yeast using 13 C–labeled glucose and gas chromatography–mass spectrometry. Metab Eng 2004, 6: 340–351. 10.1016/j.ymben.2004.06.001
Sprecher E: Über die Guttation bei Pilzen. Planta 1959, 53: 565–575. 10.1007/BF01937847
Verduyn C, Postma E, Scheffers WA, Van Dijken JP: Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 1992, 8: 501–517. 10.1002/yea.320080703
Kaup BA, Ehrich K, Pescheck M, Schrader J: Microparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an example. Biotechnol Bioeng 2008, 99: 491–498. 10.1002/bit.21713
Walisko R, Krull R, Schrader J, Wittmann C: Microparticle based morphology engineering of filamentous microorganisms for industrial bio-production. Biotechnol Lett 2012, 34: 1975–1982. 10.1007/s10529-012-0997-1
Blank LM, Sauer U: TCA cycle activity in Saccharomyces cerevisiae is a function of the environmentally determined specific growth and glucose uptake rates. Microbiology 2004, 150: 1085–1093. 10.1099/mic.0.26845-0
Blank LM, Lehmbeck F, Sauer U: Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 2005, 5: 545–558. 10.1016/j.femsyr.2004.09.008
Fischer E, Sauer U: Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur J Biochem 2003, 270: 880–891. 10.1046/j.1432-1033.2003.03448.x
Fischer E, Zamboni N, Sauer U: High-throughput metabolic flux analysis based on gas chromatography–mass spectrometry derived 13 C constraints. Anal Biochem 2004, 325: 308–316. 10.1016/j.ab.2003.10.036
Nanchen A, Fuhrer T, Sauer U: Determination of metabolic flux ratios from 13 C-experiments and gas chromatography–mass spectrometry data. Methods Mol Biol 2007, 358: 177–197. 10.1007/978-1-59745-244-1_11
Zamboni N, Fischer E, Sauer U: FiatFlux – a software for metabolic flux analysis from 13 C-glucose experiments. BMC Bioinformatics 2005, 6: 209. 10.1186/1471-2105-6-209
Blank LM, Kuepfer L, Sauer U: Large-scale 13 C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 2005, 6: R49. 10.1186/gb-2005-6-6-r49
Wittmann C: Fluxome analysis using GC-MS. Microb Cell Fact 2007, 6: 6. 10.1186/1475-2859-6-6
Heyland J, Fu J, Blank LM, Schmid A: Quantitative physiology of Pichia pastori s during glucose-limited high-cell density fed-batch cultivation for recombinant protein production. Biotechnol Bioeng 2010, 107: 357–368. 10.1002/bit.22836
Dauner M, Sauer U: GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Progress 2000, 16: 642–649. 10.1021/bp000058h