A mini-review on preference modeling and articulation in multi-objective optimization: current status and challenges

Handing Wang1, Markus Olhofer2, Yaochu Jin1
1Department of Computer Science, University of Surrey, Guildford, UK
2Honda Research Institute Europe, Offenbach, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fleming P, Purshouse R, Lygoe R (2005) Many-objective optimization: An engineering design perspective. In: Evolutionary multi-criterion optimization. Springer, New York, pp 14–32

Parmee IC, Cvetković D, Watson AH, Bonham CR (2000) Multiobjective satisfaction within an interactive evolutionary design environment. Evol Comput 8(2):197–222

Miettinen K (1999) Nonlinear multiobjective optimization. Springer, New York

Steuer RE (1986) Multiple criteria optimization: theory, computation, and applications. Wiley, New York

Zhou A, Bo-Yang Q, Li H, Zhao S-Z, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1(1):32–49

Li B, Li J, Tang K, Yao X (2015) Many-objective evolutionary algorithms: a survey. ACM Comput Surv 48(1):13

Wang H, Jin Y, Yao X (2017) Diversity assessment in many-objective optimization. IEEE Trans Cybern 47(6):1510–1522

Wagner T, Beume N, Naujoks B (2007) Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Evolutionary multi-criterion optimization. Springer, New York, pp 742–756

Deb K, Pratap A, Agarwal S, Meyarivan TAMT (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength Pareto evolutionary algorithm. In: Proceedings of EUROGEN 2001. Evolutionary methods for design, optimization and control with applications to industrial problems. Citeseer, pp 1–21

Praditwong K, Yao X (2007) How well do multi-objective evolutionary algorithms scale to large problems. In: Proceedings of the Congress on Evolutionary Computation. IEEE, pp 3959–3966

Ishibuchi H, Tsukamoto N, Nojima Y (2008) Evolutionary many-objective optimization: a short review. In: Proceedings of the Congress on Evolutionary Computation. IEEE, pp 2419–2426

Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: International Conference on Parallel Problem Solving from Nature. Springer, New York, pp 832–842

Wang H, Jiao L, Yao X (2015) Two_Arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans Evol Comput 19(4):524–541

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271

Brockhoff D, Wagner T, Trautmann H (2012) On the properties of the R2 indicator. In: The genetic and evolutionary computation conference. ACM, New York, pp 465–472

Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76

Gómez RH, Coello CAC (2013) MOMBI: a new metaheuristic for many-objective optimization based on the R2 indicator. In: Proceedings of the Congress on Evolutionary Computation. IEEE, pp 2488–2495

Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601

Cheng R, Jin Y, Olhofer M, Sendhoff B (2016) A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 20(5):773–791. doi: 10.1109/TEVC.2016.2519378

Jiao L, Wang H, Shang R, Liu F (2013) A co-evolutionary multi-objective optimization algorithm based on direction vectors. Inf Sci 228:90–112

Liu H-L, Fangqing G, Zhang Q (2014) Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans Evol Comput 18(3):450–455

Dennis J, Das I (1998) Normal-boundary intersection: a new method for generating Pareto optimal points in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657

Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63(2):81

Nisbett RE, Wilson TD (1977) Telling more than we can know: verbal reports on mental processes. Psychol Rev 84(3):231

Slovic P, Lichtenstein S (1971) Comparison of Bayesian and regression approaches to the study of information processing in judgment. Organ Behav Human Perform 6(6):649–744

Thiele L, Miettinen K, Korhonen PJ, Molina J (2009) A preference-based evolutionary algorithm for multi-objective optimization. Evol Comput 17(3):411–436

Hirsch C, Shukla PK, Schmeck H (2011) Variable preference modeling using multi-objective evolutionary algorithms. In: Evolutionary multi-criterion optimization. Springer, New York, pp 91–105

Gembicki FW (1974) Vector optimization for control with performance and parameter sensitivity indices. Ph.D. thesis, Ph.D. Thesis, Case Western Reserve Univ., Cleveland, Ohio

Wang R, Purshouse RC, Fleming PJ (2013) Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans Evol Comput 17(4):474–494

Fonseca CM, Fleming PJ (1993) Genetic algorithms for multiobjective optimization: Formulation discussion and generalization. In: Proceedings of the International Conference on Genetic Algorithms, vol 93. Citeseer, pp 416–423

Deb K (1999) Solving goal programming problems using multi-objective genetic algorithms. In: Proceedings of the 1999 congress on evolutionary computation, CEC 99, vol 1. IEEE, pp 77–84

Wagner T, Trautmann H (2010) Integration of preferences in hypervolume-based multiobjective evolutionary algorithms by means of desirability functions. IEEE Trans Evol Comput 14(5):688–701

Sakawa M, Kato K (2002) An interactive fuzzy satisficing method for general multiobjective 0–1 programming problems through genetic algorithms with double strings based on a reference solution. Fuzzy Sets Syst 125(3):289–300

Coello CAC (2000) Handling preferences in evolutionary multiobjective optimization: a survey. In: Proceedings of the Congress on Evolutionary Computation, vol 1. IEEE, pp 30–37

Phelps S, Köksalan M (2003) An interactive evolutionary metaheuristic for multiobjective combinatorial optimization. Manage Sci 49(12):1726–1738

Köksalan M, Karahan I (2010) An interactive territory defining evolutionary algorithm: iTDEA. IEEE Trans Evol Comput 14(5):702–722

Wang R, Purshouse RC, Fleming PJ (2015) Preference-inspired co-evolutionary algorithms using weight vectors. Eur J Oper Res 243(2):423–441

Wang R, Zhou Z, Ishibuchi H, Liao T, Zhang T (2016) Localized weighted sum method for many-objective optimization. IEEE Trans Evol Comput. doi: 10.1109/TEVC.2016.2611642

Branke J, Kaußler T, Schmeck H (2001) Guidance in evolutionary multi-objective optimization. Adv Eng Softw 32(6):499–507

Branke J, Deb K (2005) Integrating user preferences into evolutionary multi-objective optimization. In: Knowledge Incorporation in Evolutionary Computation. Springer, New York, pp 461–477

Ma X, Zhang Q, Yang J, Zhu Z (2017) On Tchebycheff decomposition approaches for multi-objective evolutionary optimization. IEEE Trans Evol Comput. doi: 10.1109/TEVC.2017.2704118

Ishibuchi H, Sakane Y, Tsukamoto N, Nojima Y (2009) Adaptation of scalarizing functions in MOEA/D: an adaptive scalarizing function-based multiobjective evolutionary algorithm. In: Evolutionary multi-criterion optimization. Springer, New York, pp 438–452

Ishibuchi H, Sakane Y, Tsukamoto N, Nojima Y (2010) Simultaneous use of different scalarizing functions in MOEA/D. In: The genetic and evolutionary computation conference. ACM, New York, pp 519–526

Wang R, Zhang Q, Zhang T (2016) Decomposition-based algorithms using Pareto adaptive scalarizing methods. IEEE Trans Evol Comput 20(6):821–837

Liu HL, Gu FQ, Cheung YM (2010) T-MOEA/D: MOEA/D with objective transform in multi-objective problems. In: Information Science and Management Engineering (ISME), International Conference of, vol 2. IEEE, pp 282–285

Sato H (2014) Inverted PBI in MOEA/D and its impact on the search performance on multi and many-objective optimization. In: The Genetic and Evolutionary Computation Conference. ACM, New York, pp 645–652

Haimes YY, Hall WA (1974) Multiobjectives in water resource systems analysis: the surrogate worth trade off method. Water Resour Res 10(4):615–624

Brafman RI (2011) Relational preference rules for control. Artif Intell 175(7):1180–1193

Zitzler E, Thiele L, Bader J (2008) SPAM: set preference algorithm for multiobjective optimization. In: International Conference on Parallel Problem Solving from Nature, vol 5199. Springer, New York, pp 847–858

Jaimes AL, Coello CAC (2009) Study of preference relations in many-objective optimization. In: The genetic and evolutionary computation conference. ACM, New York, pp 611–618

Thomas L (2008) Saaty. Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98

Feldman AM (1989) Preferences and utility. In: Welfare economics and social choice theory. Springer, New York, pp 9–22

Jeantet G, Spanjaard O (2011) Computing rank dependent utility in graphical models for sequential decision problems. Artif Intell 175(7):1366–1389

Pedro LR, Takahashi R (2011) Modeling decision-maker preferences through utility function level sets. In: Evolutionary multi-criterion optimization. Springer, New York, pp 550–563

Costa CAC (2012) Readings in multiple criteria decision aid. Springer Science & Business Media, New York

Greenwood GW, Hu X, D’Ambrosio JG (1996) Fitness functions for multiple objective optimization problems: Combining preferences with Pareto rankings. In: FOGA, vol 96, pp 437–455

White CC III, Sage AP, Dozono S (1984) A model of multiattribute decisionmaking and trade-off weight determination under uncertainty. IEEE Trans Syst Man Cybern 14(2):223–229

Cvetković D, Parmee IC (2002) Preferences and their application in evolutionary multiobjective optimization. IEEE Trans Evol Comput 6(1):42–57

Rekiek B, De Lit P, Pellichero F, L’Eglise T, Falkenauer E, Delchambre A (2000) Dealing with user’s preferences in hybrid assembly lines design. IFAC Proc Vol 33(17):989–994

Waegeman W, De Baets B (2011) On the ERA ranking representability of pairwise bipartite ranking functions. Artif Intell 175(7):1223–1250

Siskos J, Lombard J, Oudiz A (1986) The use of multicriteria outranking methods in the comparison of control options against a chemical pollutant. J Oper Res Soc 37(4):357–371

Brans JP, Vincke P, Mareschal B (1986) How to select and how to rank projects: the PROMETHEE method. Eur J Oper Res 24(2):228–238

Massebeuf S, Fonteix C, Kiss LN, Marc I, Pla F, Zaras K (1999) Multicriteria optimization and decision engineering of an extrusion process aided by a diploid genetic algorithm. In: Proceedings of the 1999 congress on evolutionary computation, CEC 99, vol 1. IEEE, pp 14–21

Shukla PK, Emmerich M, Deutz A (2013) A theoretical analysis of curvature based preference models. In: International Conference on Evolutionary Multi-Criterion Optimization. Springer, New York, pp 367–382

Rachmawati L, Srinivasan D (2009) Multiobjective evolutionary algorithm with controllable focus on the knees of the Pareto front. IEEE Trans Evol Comput 13(4):810–824

Branke J, Deb K, Dierolf H, Osswald M (2004) Finding knees in multi-objective optimization. In: International Conference on Parallel Problem Solving from Nature. Springer, New York, pp 722–731

Deb K, Gupta S (2011) Understanding knee points in bicriteria problems and their implications as preferred solution principles. Eng Optim 43(11):1175–1204

Jin Y, Bernhard S (2008) Pareto-based multi-objective machine learning: An overview and case studies. IEEE Trans Syst Man Cybern Part C Appl Rev 38(3):397–415

Smith C, Jin Y (2014) Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction. Neurocomputing 143:302–311

Li L, Yao X, Stolkin R, Gong M, He S (2014) An evolutionary multiobjective approach to sparse reconstruction. IEEE Trans Evol Comput 18(6):827–845

Zhang X, Tian Y, Jin Y (2015) A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput 19(6):761–776

Wang H, He S, Yao X (2017) Nadir point estimation for many-objective optimization problems based on emphasized critical regions. Soft Comput 21(9):2283–2295

Branke J, Deb K, Miettinen K, Slowiński R (2008) Multiobjective optimization. Interactive and evolutionary approaches, vol 5252. Springer, New York

Deb K, Kumar A (2007) Interactive evolutionary multi-objective optimization and decision-making using reference direction method. In: The genetic and evolutionary computation conference. ACM, New York, pp 781–788

Amiri M, Ekhtiari M, Yazdani M (2011) Nadir compromise programming: a model for optimization of multi-objective portfolio problem. Expert Syst Appl 38(6):7222–7226

Voget S, Kolonko M (1998) Multidimensional optimization with a fuzzy genetic algorithm. J Heuristics 4(3):221–244

Hadjali A, Mokhtari A, Pivert O (2012) Expressing and processing complex preferences in route planning queries: towards a fuzzy-set-based approach. Fuzzy Sets Syst 196:82–104

Pirjanian P (1998) Multiple objective action selection and behavior FPcsion using voting. Ph.D. thesis, Department of Medical Informatics and Image Analysis, Institute of Electronic Systems, Aalborg University, Aalborg, Denmark

Fodor JC, Roubens MR (1994) Fuzzy preference modelling and multicriteria decision support, vol 14. Springer Science & Business Media, New York

Jin Y, Sendhoff B (2002) Fuzzy preference incorporation into evolutionary multi-objective optimization. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, vol 1, pp 26–30

Abraham A, Jain L (2005) Evolutionary multiobjective optimization. Springer, New York

Khare V, Yao X, Deb K (2003) Performance scaling of multi-objective evolutionary algorithms. In: Evolutionary Multi-Criterion Optimization. Springer, New York, pp 376–390

Miettinen K, Hakanen J, Podkopaev D (2016) Interactive nonlinear multiobjective optimization methods. In: Multiple criteria decision analysis. Springer, New York, pp 927–976

Said LB, Bechikh S, Ghédira K (2010) The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans Evol Comput 14(5):801–818

Deb K, Chaudhuri S (2005) I-EMO: an interactive evolutionary multi-objective optimization tool. In: Pattern Recognition and Machine Intelligence. Springer, New York, pp 690–695

Miettinen K, Podkopaev D, Ruiz F, Luque M (2015) A new preference handling technique for interactive multiobjective optimization without trading-off. J Global Optim 63(4):633–652

Miettinen K, Ruiz F (2016) NAUTILUS framework: towards trade-off-free interaction in multiobjective optimization. J Bus Econ 86(1–2):5–21

Deb K, Chaudhuri S (2007) I-MODE: an interactive multi-objective optimization and decision-making using evolutionary methods. In: Evolutionary Multi-Criterion Optimization. Springer, New York, pp 788–802

Sindhya K, Ruiz AB, Miettinen K (2011) A preference based interactive evolutionary algorithm for multi-objective optimization: PIE. In: Evolutionary Multi-Criterion Optimization. Springer, New York, pp 212–225

Gong M, Liu F, Zhang W, Jiao L, Zhang Q (2011) Interactive MOEA/D for multi-objective decision making. In: The genetic and evolutionary computation conference. ACM, New York, pp 721–728

Ruiz AB, Luque M, Miettinen K, Saborido R (2015) An interactive evolutionary multiobjective optimization method: Interactive WASF-GA. In: Evolutionary multi-criterion optimization. Springer, New York, pp 249–263

Ruiz AB, Luque M, Ruiz F, Saborido R (2015) A combined interactive procedure using preference-based evolutionary multiobjective optimization. application to the efficiency improvement of the auxiliary services of power plants. Expert Syst Appl 42(21):7466–7482

Liu R, Wang R, Feng W, Huang J, Jiao L (2016) Interactive reference region based multi-objective evolutionary algorithm through decomposition. IEEE Access 4:7331–7346

Battiti R, Passerini A (2010) Brain-computer evolutionary multiobjective optimization: a genetic algorithm adapting to the decision maker. IEEE Trans Evol Comput 14(5):671–687

Branke J, Greco S, Słowiński R, Zielniewicz P (2009) Interactive evolutionary multiobjective optimization using robust ordinal regression. In: Evolutionary multi-criterion optimization. Springer, New York, pp 554–568

Deb K, Sinha A, Korhonen PJ, Wallenius J (2010) An interactive evolutionary multiobjective optimization method based on progressively approximated value functions. IEEE Trans Evol Comput 14(5):723–739

Sinha A, Korhonen P, Wallenius J, Deb K (2014) An interactive evolutionary multi-objective optimization algorithm with a limited number of decision maker calls. Eur J Oper Res 233(3):674–688

Chankong V, Haimes YY (1983) Multiobjective decision making: theory and methodology. North Holland, New York

Hwang CL, Masud ASM (1979) Multiple objective decision making-methods and applications. Springer, New York

Torokhti A, Howlett P (1985) Theory of multiobjective optimization, vol 176. Elsevier, Amsterdam

Roy B (2005) Paradigms and challenges. In: Multiple criteria decision analysis: state of the art surveys. Springer, New York, pp 3–24

Bouyssou D (1986) Some remarks on the notion of compensation in MCDM. Eur J Oper Res 26(1):150–160

Figueira J, Mousseau V, Roy B (2005) ELECTRE methods. In: Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, New York, pp 133–153

Brans JP, Mareschal B (2005) PROMETHEE methods. In: Multiple criteria decision analysis: state of the art surveys. Springer, New York, pp 163–186

Siskos Y, Grigoroudis E, Matsatsinis NF (2005) UTA methods. In: Multiple criteria decision analysis: state of the art surveys. Springer, New York, pp 297–334

Dyer JS (2005) MAUT-multiattribute utility theory. In: Multiple criteria decision analysis: state of the art surveys. Springer, New York, pp 265–292

Meyer P, Roubens M (2005) Choice, ranking and sorting in fuzzy multiple criteria decision aid. In: Multiple criteria decision analysis: state of the art surveys. Springer, New York, pp 471–503

Greco S, Matarazzo B, Słowinński R (2005) Decision rule approach. In: Multiple criteria decision analysis: state of the art surveys. Springer, New York, pp 507–555

Ehrgott M, Wiecek MM (2005) Mutiobjective programming. In: Multiple criteria decision analysis: state of the art surveys. Springer, New York, pp 667–708

Larichev OI (1992) Cognitive validity in design of decision-aiding techniques. J Multi Criteria Decis Anal 1(3):127–138

Rachmawati L, Srinivasan D (2006) Preference incorporation in multi-objective evolutionary algorithms: a survey. In: Proceedings of the Congress on Evolutionary Computation. IEEE, pp 962–968

Fonseca CM, Fleming PJ (1998) Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. a unified formulation. IEEE Trans Syst Man Cybern Part A Syst Hum 28(1):26–37

Tan KC, Khor EF, Lee TH, Sathikannan R (2003) An evolutionary algorithm with advanced goal and priority specification for multi-objective optimization. J Artif Intell Res 18:183–215

Yang X, Gen M (1994) Evolution program for bicriteria transportation problem. Comput Ind Eng 27(1):481–484

Wilson PB, Macleod MD (1993) Low implementation cost IIR digital filter design using genetic algorithms. IEE/IEEE Workshop Nat Algorithms Signal Process 1:1–4

Wienke D, Lucasius C, Kateman G (1992) Multicriteria target vector optimization of analytical procedures using a genetic algorithm: part I. theory, numerical simulations and application to atomic emission spectroscopy. Anal Chim Acta 265(2):211–225

Quagliarella D, Vicini A (1997) Coupling genetic algorithms and gradient based optimization techniques. In: Genetic algorithms and evolution strategy in engineering and computer science: recent advances and industrial applications. Wiley, Hoboken, pp 289–309

Wang R, Purshouse RC, Giagkiozis I, Fleming PJ (2015) The iPICEA-g: a new hybrid evolutionary multi-criteria decision making approach using the brushing technique. Eur J Oper Res 243(2):442–453

Cheng R, Rodemann T, Fischer M, Olhofer M, Jin Y (2017) Evolutionary many-objective optimization of hybrid electric vehicle control: from general optimization to preference articulation. IEEE Trans Emerg Top Comput Intell 1(2):97–111

Wierzbicki AP (1980) The use of reference objectives in multiobjective optimization. In: Multiple criteria decision making theory and application. Springer, New York, pp 468–486

Korhonen PJ, Laakso J (1986) A visual interactive method for solving the multiple criteria problem. Eur J Oper Res 24(2):277–287

Nikulin Y, Miettinen K, Mäkelä MM (2012) A new achievement scalarizing function based on parameterization in multiobjective optimization. OR Spectr 34(1):69–87

Jaszkiewicz A, Słowiński R (1999) The ‘light beam search’ approach-an overview of methodology applications. Eur J Oper Res 113(2):300–314

Liu R, Wang X, Liu J, Fang L, Jiao L (2013) A preference multi-objective optimization based on adaptive rank clone and differential evolution. Nat Comput 12(1):109–132

Deb K, Kumar A (2007) Light beam search based multi-objective optimization using evolutionary algorithms. In: Proceedings of the Congress on Evolutionary Computation. IEEE, pp 2125–2132

Molina J, Santana LV, Hernández-Díaz AG, Coello CAC, Caballero R (2009) g-dominance: Reference point based dominance for multiobjective metaheuristics. Eur J Oper Res 197(2):685–692

Ishibuchi H, Tsukamoto N, Sakane Y, Nojima Y (2009) Hypervolume approximation using achievement scalarizing functions for evolutionary many-objective optimization. In: Proceedings of the Congress on Evolutionary Computation. IEEE, pp 530–537

Ishibuchi H, Tsukamoto N, Sakane Y, Nojima Y (2010) Indicator-based evolutionary algorithm with hypervolume approximation by achievement scalarizing functions. In: The Genetic and Evolutionary Computation Conference. ACM, New York, pp 527–534

Chugh T, Sindhya K, Hakanen J, Miettinen K (2015) An interactive simple indicator-based evolutionary algorithm (I-SIBEA) for multiobjective optimization problems. In: Evolutionary multi-criterion optimization. Springer, New York, pp 277–291

Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques: concepts and techniques. Elsevier, Amsterdam

Sun X, Gong D, Jin Y, Chen S (2013) A new surrogate-assisted interactive genetic algorithm with weighted semi-supervised learning. IEEE Trans Cybern 43(2):85–698

Jin Y (2011) Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm Evol Comput 1(2):61–70

Arrow KJ (2012) Social choice and individual values, vol 12. Yale University Press, New Haven

Janis IL, Mann L (1977) Decision making: a psychological analysis of conflict, choice, and commitment. Free Press, New York

Ackoff RL (1967) Management misinformation system. Manag Syst 14(4):B-147

Edwards W (1954) The theory of decision making. Psychol Bull 51(4):380

Hoch SJ, Schkade DA (1996) A psychological approach to decision support systems. Manag Sci 42(1):51–64

Wang H, Yao X (2016) Objective reduction based on nonlinear correlation information entropy. Soft Comput 20(6):2393–2407

Freitas AR, Fleming PJ, Guimaraes F (2013) A non-parametric harmony-based objective reduction method for many-objective optimization. In: IEEE International Conference on Systems, Man, and Cybernetics. IEEE, pp 651–656

de Freitas ARR, Fleming PJ, Guimarães FG (2015) Aggregation trees for visualization and dimension reduction in many-objective optimization. Inf Sci 298:288–314

Brockhoff D, Zitzler E (2009) Objective reduction in evolutionary multiobjective optimization: theory and applications. Evol Comput 17(2):135–166

Singh HK, Isaacs A, Ray T (2011) A Pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems. IEEE Transactions on Evol Comput 15(4):539–556

Jaimes AL, Coello CAC, Chakraborty D (2008) Objective reduction using a feature selection technique. In: The Genetic and Evolutionary Computation Conference. ACM, New York, pp 673–680

Hämäläinen JP, Miettinen K, Tarvainen P, Toivanen J (2003) Interactive solution approach to a multiobjective optimization problem in a paper machine headbox design. J Optim Theory Appl 116(2):265–281

Kangas JA, Kohonen Tk, Laaksonen JT (1990) Variants of self-organizing maps. IEEE Trans Neural Netw 1(1):93–99

Obayashi S, Sasaki D (2003) Visualization and data mining of Pareto solutions using self-organizing map. In: Evolutionary multi-criterion optimization. Springer, New York, pp 796–809

Nekolny B (2010) Contextual self-organizing maps for visual design space exploration. Master’s thesis, Iowa State University

Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2):187–198

Wang Q, Shen Y, Zhang JQ (2005) A nonlinear correlation measure for multivariable data set. Phys D 200(3):287–295

Wang H, Jin Y (2017) Efficient nonlinear correlation detection for decomposed search in evolutionary multi-objective optimization. In: Proceedings of the congress on evolutionary computation, pp 649–656

Deb K, Saxena DK (2005) On finding Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. Technical report, Indian Institute of Technology Kanpur

Saxena DK, Duro JA, Tiwari A, Deb K, Zhang Q (2013) Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans Evol Comput 17(1):77–99

Deb K, Gupta H (2006) Introducing robustness in multi-objective optimization. Evol Comput 14(4):463–494

Jin Y, Sendhoff B (2003) Trade-off between performance and robustness: an evolutionary multiobjective approach. In: Fonseca CM, Fleming PJ, Zitzler E, Thiele L, Deb K (eds) Evolutionary multi-criterion optimization, EMO 2003. Lecture Notes in Computer Science, vol 2632. Springer, Berlin, pp 237–251

Jin Y, Tang K, Xin Y, Sendhoff B, Yao X (2013) A framework for finding robust optimal solutions over time. Memet Comput 5(1):3–18

Deb K, Gupta H (2005) Searching for robust Pareto-optimal solutions in multi-objective optimization. Lect Notes Comput Sci 3410:150–164

Sülflow A, Drechsler N, Drechsler R (2007) Robust multi-objective optimization in high dimensional spaces. In: Evolutionary multi-criterion optimization. Springer, New York, pp 715–726

Gunawan S, Azarm S (2005) Multi-objective robust optimization using a sensitivity region concept. Struct Multidiscip Optim 29(1):50–60

Li M, Azarm S, Aute V (2005) A multi-objective genetic algorithm for robust design optimization. In: The Genetic and Evolutionary Computation Conference. ACM, New York, pp 771–778

Lim D, Ong Y-S, Jin Y, Sendhoff B, Lee BS (2006) Inverse multi-objective robust evolutionary optimization. Genet Progr Evol Mach 7(4):383–404

Greco S, Słowiński R, Figueira JR, Mousseau V (2010) Robust ordinal regression. In: Trends in multiple criteria decision analysis. Springer, New York, pp 241–283

Bana CA, De Corte JM, Vansnick JC et al (2005) On the mathematical foundation of MACBETH. Springer, New York

Wang H, Jiao L, Shang R, He S, Liu F (2015) A memetic optimization strategy based on dimension reduction in decision space. Evol Comput 23(1):69–100

Adra SF, Dodd TJ, Griffin IA, Fleming PJ (2009) Convergence acceleration operator for multiobjective optimization. IEEE Trans Evol Comput 13(4):825–847

Gaspar-Cunha A, Vieira A (2004) A hybrid multi-objective evolutionary algorithm using an inverse neural network. In: Hybrid Metaheuristics, pp 25–30

Laumanns M, Ocenasek J (2002) Bayesian optimization algorithms for multi-objective optimization. In: International Conference on Parallel Problem Solving from Nature. Springer, New York, pp 298–307

Khan N, Goldberg DE, Pelikan M (2002) Multi-objective Bayesian optimization algorithm. Urbana 51:684–684

Larranaga P, Lozano JA (2002) Estimation of distribution algorithms: a new tool for evolutionary computation, vol 2. Springer Science & Business Media, New York

Hauschild M, Pelikan M (2011) An introduction and survey of estimation of distribution algorithms. Swarm Evol Comput 1(3):111–128

Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: Empirical results. Evol Comput 8(2):173–195

Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Proceedings of the 2002 congress on evolutionary computation, CEC 2002, vol 1. IEEE Computer Society, pp 825–830

Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506

López-Ibáñez M, Knowles J (2015) Machine decision makers as a laboratory for interactive EMO. In: Evolutionary Multi-Criterion Optimization. Springer, New York, pp 295–309

Van Veldhuizen DA (1999) Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Technical report, DTIC Document

Yu G, Zheng J, Li X (2015) An improved performance metric for multiobjective evolutionary algorithms with user preferences. In: Proceedings of the Congress on Evolutionary Computation. IEEE, pp 908–915

He Z, Yen GG (2016) Visualization and performance metric in many-objective optimization. IEEE Trans Evol Comput 20(3):386–402

Pryke A, Mostaghim S, Nazemi A (2007) Heatmap visualization of population based multi objective algorithms. In: Evolutionary Multi-Criterion Optimization. Springer, New York, pp 361–375

Valdés JJ, Barton AJ (2007) Visualizing high dimensional objective spaces for multi-objective optimization: a virtual reality approach. In: Proceedings of the Congress on Evolutionary Computation. IEEE, pp 4199–4206

Lowe D, Tipping M (1996) Feed-forward neural networks and topographic mappings for exploratory data analysis. Neural Comput Appl 4(2):83–95

Hoffman P, Grinstein G, Marx K, Grosse I, Stanley E (1997) DNA visual and analytic data mining. In: Proceedings of Visualization. IEEE, pp 437–441

Chen S, Amid D, Shir OM, Limonad L, Boaz D, Anaby-Tavor A, Schreck T (2013) Self-organizing maps for multi-objective Pareto frontiers. In: Visualization Symposium (PacificVis), IEEE Pacific. IEEE, pp 153–160

Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

Silva R, Salimi A, Li M, Freitas ARR, Guimarães FG, Lowther DA (2016) Visualization and analysis of tradeoffs in many-objective optimization: a case study on the interior permanent magnet motor design. IEEE Trans Magn 52(3):1–4

Freitas ARR, Silva RCP, Guimarães FG (2014) On the visualization of trade-offs and reducibility in many-objective optimization. In: The Genetic and Evolutionary Computation Conference. ACM, New York, pp 1091–1098

Pigozzi G, Tsoukiàs A, Viappiani P (2016) Preferences in artificial intelligence. Ann Math Artif Intell 77(3–4):361–401

Goldsmith J, Junker U (2009) Preference handling for artificial intelligence. AI Mag 29(4):9

Domshlak C, Hüllermeier E, Kaci S, Prade H (2011) Preferences in AI: an overview. Artif Intell 175(7):1037–1052