A microscopic probabilistic description of a locally regulated population and macroscopic approximations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bolker, B. and Pacala, S. (1997). Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. <i>Theoret. Population Biol.</i> <b>52</b> 179–197.
Bolker, B. and Pacala, S. (1999). Spatial moment equations for plant competition: Understanding spatial strategies and the advantages of short dispersal. <i>The American Naturalist</i> <b>153</b> 575–602.
Dieckmann, U. and Law, R. (2000). Relaxation projections and the method of moments. In <i>The Geometry of Ecological Interactions</i> (U. Dieckmann, R. Law and J. A. J. Metz, eds.) 412–455. Cambridge Univ. Press.
Evans, S. N. and Perkins, E. A. (1994). Measure-valued branching diffusions with singular interactions. <i>Canad. J. Math.</i> <b>46</b> 120–168.
Joffe, A. and Métivier, M. (1986). Weak convergence of sequences of semimartingales with applications to multi-type branching processes. <i>Adv. in Appl. Probab.</i> <b>18</b> 20–65.
Kallenberg, O. (1975). <i>Random Measures.</i> Akademie Verlag, Berlin.
Law, R. and Dieckmann, U. (2002). Moment approximations of individual-based models. In <i>The Geometry of Ecological Interactions</i> (U. Dieckmann, R. Law and J. A. J. Metz, eds.) 252–270. Cambridge Univ. Press.
Law, R., Murrell, D. J. and Dieckmann, U. (2003). Population growth in space and time: Spatial logistic equations. <i>Ecology</i> <b>84</b> 252–262.
Méléard, S. and Roelly, S. (1993). Sur les convergences étroite ou vague de processus à valeurs mesures. <i>C. R. Acad. Sci. Paris Sér. I Math.</i> <b>317</b> 785–788.
Moller, J. (1994). <i>Lectures on Random Voronoi Tesselations</i>. <i>Lecture Notes in Statist.</i> <b>87</b>. Springer, Berlin.
Olivares-Rieumont, P. and Rouault, A. (1991). Unscaled spatial branching processes with interaction: Macroscopic equation and local equilibrium. <i>Stochastic Anal. Appl.</i> <b>8</b> 445–461.
Roelly, S. (1986). A criterion of convergence of measure-valued processes: Application to measure branching processes. <i>Stochastics Stochastics Rep.</i> <b>17</b> 43–65.