A microlattice material with negative or zero thermal expansion
Tài liệu tham khảo
Xiong, 2015, Advanced micro-lattice materials, Adv. Eng. Mater., 17, 10.1002/adem.201400471
Rashed, 2016, Metallic microlattice materials: a current state of the art on manufacturing, mechanical properties and applications, Mater. Des., 95, 518, 10.1016/j.matdes.2016.01.146
Jacobsen, 2007, Micro-scale truss structures formed from self-propagating photopolymer waveguides, Adv. Mater., 19, 3892, 10.1002/adma.200700797
Liu, 2014, Dynamic energy absorption characteristics of hollow microlattice structures, Mech. Mater., 77, 1, 10.1016/j.mechmat.2014.06.008
Tancogne-Dejean, 2016, Additive-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading, Acta Mater., 116, 14, 10.1016/j.actamat.2016.05.054
Lu, 2005, Active cooling by metallic sandwich structures with periodic cores, Prog. Mater. Sci., 50, 789, 10.1016/j.pmatsci.2005.03.001
Roper, 2012, Anisotropic convective heat transfer in microlattice materials, AIChE J., 59, 622, 10.1002/aic.13821
Maloney, 2012, Multifunctional heat exchangers derived from three-dimensional microlattice structures, Int. J Heat. Mass Transf., 55, 2486, 10.1016/j.ijheatmasstransfer.2012.01.011
Yu, 2012, Three-dimensional porous LiFePO4: design, architectures and high performance for lithium ion batteries, Curr. Inorg. Chem., 2, 194, 10.2174/1877944111202020194
Alsalla, 2016, Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique, Mater. Sci. Eng. A, 669, 1, 10.1016/j.msea.2016.05.075
Huang, 2017, Mechanical behavior of three-dimensional pyramidal aluminum lattice materials, Mater. Sci. Eng. A, 696, 520, 10.1016/j.msea.2017.04.053
Grima, 2007, A system with adjustable positive or negative thermal expansion, Proc. R. Soc. A, 463, 1585, 10.1098/rspa.2007.1841
Grima, 2011, Unusual thermoelastic properties of methanol monohydrate, Science, 331, 687, 10.1126/science.1201564
Lim, 2012, Negative thermal expansion structures constructed from positive thermal expansion trusses, J Mater. Sci., 47, 368, 10.1007/s10853-011-5806-z
Lim, 2013, Negative thermal expansion in transversely isotropic space frame trusses, Phys. Status Solidi B, 250, 2062, 10.1002/pssb.201384234
Oruganti, 2014, Thermal expansion behavior in fabricated cellular structures, Mater. Sci. Eng. A, 371, 24, 10.1016/S0921-5093(03)00054-6
Lakes, 2007, Cellular solids with tunable positive or negative thermal expansion of unbounded magnitude, Appl. Phys. Lett., 90, 221905, 10.1063/1.2743951
Lim, 2005, Anisotropic and negative thermal expansion behavior in a cellular microstructure, J Mater. Sci., 40, 3275, 10.1007/s10853-005-2700-6
Sigmund, 1996, Composites with extremal thermal expansion coefficients, Appl. Phys. Lett., 69, 3203, 10.1063/1.117961
Takezawa, 2015, Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing, APL Mater., 3, 076103, 10.1063/1.4926759
Hirota, 2015, Optimal design of periodic frame structures with negative thermal expansion via mixed integer programing, Optim. Eng., 16, 767, 10.1007/s11081-015-9276-z
Noda, 2003