A microfabricated thickness shear mode electroacoustic resonator for the label-free detection of cardiac troponin in serum

Talanta - Tập 215 - Trang 120890 - 2020
Jinlin Liu1, Da Chen1,2, Peng Wang1, Ge Song1, Xiaojun Zhang1, Zhongli Li1, Yanyan Wang3, Jingjing Wang1, Jun Yang4
1College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
2State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
3School of Optoelectronic Science and Engineering & Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
4Mechanical & Materials Engineering, University of Western Ontario, London, ON, N6A 3K7, Canada

Tài liệu tham khảo

Yang, 2006, Cardiac markers and their point-of-care testing for diagnosis of acute myocardial infarction, Clin. Biochem., 39, 771, 10.1016/j.clinbiochem.2006.05.011 Bergmann, 2011, Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover, Exp. Cell Res., 317, 188, 10.1016/j.yexcr.2010.08.017 Justino, 2016, Critical overview on the application of sensors and biosensors for clinical analysis, Trac. Trends Anal. Chem., 85, 36, 10.1016/j.trac.2016.04.004 Apple, 2002, Cardiac troponin: redefining the detection of myocardial infarction, Am. Clin. Lab., 21, 32 Westermann, 2017, High-sensitivity assays for troponin in patients with cardiac disease, Nat. Rev. Cardiol., 14, 472, 10.1038/nrcardio.2017.48 Mohammed, 2011, Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review, Lab Chip, 11, 569, 10.1039/C0LC00204F Wang, 2020, Strain sensor for full-scale motion monitoring based on self-assembled PDMS/MWCNTs layers, J. Phys. D Appl. Phys., 53, 10.1088/1361-6463/ab5b2b Pawula, 2016, SPR detection of cardiac troponin T for acute myocardial infarction, Talanta, 146, 823, 10.1016/j.talanta.2015.06.006 Kwon, 2011, Development of a surface plasmon resonance-based immunosensor for the rapid detection of cardiac troponin I, Biotechnol. Lett., 33, 921, 10.1007/s10529-010-0509-0 Zhang, 2018, Quantitative and ultrasensitive detection of multiplex cardiac biomarkers in lateral flow assay with core-shell SERS nanotags, Biosens. Bioelectron., 106, 204, 10.1016/j.bios.2018.01.062 Su, 2019, Plasmon near-field coupling of bimetallic nanostars and a hierarchical bimetallic SERS "hot field": toward ultrasensitive simultaneous detection of multiple cardiorenal syndrome biomarkers, Anal. Chem., 91, 864, 10.1021/acs.analchem.8b03573 Liu, 2016, Nanocomposites of gold nanoparticles and graphene oxide towards an stable label-free electrochemical immunosensor for detection of cardiac marker troponin-I, Anal. Chim. Acta, 909, 1, 10.1016/j.aca.2015.12.023 Burcu Bahadir, 2015, Applications of electrochemical immunosensors for early clinical diagnostics, Talanta, 132, 162, 10.1016/j.talanta.2014.08.063 Negahdary, 2017, Electrochemical aptasensing of human cardiac troponin I based on an array of gold nanodumbbells-Applied to early detection of myocardial infarction, Sensor. Actuator. B, 252, 62, 10.1016/j.snb.2017.05.149 Fathil, 2017, Substrate-gate coupling in ZnO-FET biosensor for cardiac troponin I detection, Sensor. Actuator. B, 242, 1142, 10.1016/j.snb.2016.09.131 Kong, 2012, CMOS-compatible, label-free silicon-nanowire biosensors to detect cardiac troponin I for acute myocardial infarction diagnosis, Biosens. Bioelectron., 34, 267, 10.1016/j.bios.2012.02.019 Kim, 2016, Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity, Biosens. Bioelectron., 77, 695, 10.1016/j.bios.2015.10.008 Li, 2020, 207 Guo, 2019, Signal-enhanced detection of multiplexed cardiac biomarkers by a paper-based fluorogenic immunodevice integrated with zinc oxide nanowires, Anal. Chem., 91, 9300, 10.1021/acs.analchem.9b02557 Fu, 2017, Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications, Prog. Mater. Sci., 89, 31, 10.1016/j.pmatsci.2017.04.006 Wang, 2018, Film bulk acoustic formaldehyde sensor with layer-by-layer assembled carbon nanotubes/polyethyleneimine multilayers, J. Phys. D Appl. Phys., 51 Mattos, 2012, A dual quartz crystal microbalance for human cardiac troponin T in real time detection, Sensor. Actuator. B, 161, 439, 10.1016/j.snb.2011.10.058 Periyakaruppan, 2013, Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays, Anal. Chem., 85, 3858, 10.1021/ac302801z Agafonova, 2014, Quartz crystal microbalance for the cardiac markers/antibodies binding kinetic measurements in the plasma samples, Chem. Phys. Lett., 604, 5, 10.1016/j.cplett.2014.04.046 Kurosawa, 2004, Evaluation of a high-affinity QCM immunosensor using antibody fragmentation and 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer, Biosens. Bioelectron., 20, 1134, 10.1016/j.bios.2004.05.016 Zhang, 2018, Film bulk acoustic resonators (FBARs) as biosensors: a review, Biosens. Bioelectron., 116, 1, 10.1016/j.bios.2018.05.028 Wang, 2018, The detection of formaldehyde using microelectromechanical acoustic resonator with multiwalled carbon nanotubes-polyethyleneimine composite coating, J. Micromech. Microeng., 28, 10.1088/1361-6439/aa9c23 Song, 2018, Film bulk acoustic formaldehyde sensor with polyethyleneimine-modified single-wall carbon nanotubes as sensitive layer, Sensor. Actuator. B, 266, 204, 10.1016/j.snb.2018.03.129 Ma, 2018, ZnO piezoelectric film resonator modified with multi-walled carbon nanotubes/polyethyleneimine bilayer for the detection of trace formaldehyde, Appl. Phys. Mater. Sci. Process, 124, 10.1007/s00339-017-1481-5 Chen, 2018, Micro-electromechanical acoustic resonator coated with polyethyleneimine nanofibers for the detection of formaldehyde vapor, Micromachines, 9 Chen, 2012, A pure shear mode ZnO film resonator for the detection of organophosphorous pesticides, Sensor. Actuator. B, 171–172, 1081, 10.1016/j.snb.2012.06.037 Lee, 2010, Detection of carcinoembryonic antigen using AlN FBAR, Thin Solid Films, 518, 6630, 10.1016/j.tsf.2010.03.060 Wang, 2014, Label-free immunosensor based on micromachined bulk acoustic resonator for the detection of trace pesticide residues, Sensor. Actuator. B Chem., 190, 378, 10.1016/j.snb.2013.08.102 Zhao, 2014, Label-free detection of human prostate-specific antigen (hPSA) using film bulk acoustic resonators (FBARs), Sensor. Actuator. B Chem., 190, 946, 10.1016/j.snb.2013.09.064 Wang, 2014, A micro-machined thin film electro-acoustic biosensor for detection of pesticide residuals, J. Zhejiang Univ. - Sci. C, 15, 383, 10.1631/jzus.C1300289 Chen, 2017, ZnO film bulk acoustic resonator for the kinetics study of human blood coagulation, Sensors, 17, 1015, 10.3390/s17051015 Mirea, 2019, Impact of FBAR design on its sensitivity as in-liquid gravimetric sensor, Sens. Actuators, A, 289, 87, 10.1016/j.sna.2019.02.012 Chen, 2017, Micro-electromechanical film bulk acoustic sensor for plasma and whole blood coagulation monitoring, Biosens. Bioelectron., 91, 465, 10.1016/j.bios.2016.12.063 Zhao, 2019, Frequency spectra of coupling vibration in high-frequency thickness-shear ZnO thin film resonator applied in sensing field based on the Hamilton principle, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr., 66, 1331, 10.1109/TUFFC.2019.2914587 Katardjiev, 2012, Recent developments in thin film electro-acoustic technology for biosensor applications, Vacuum, 86, 520, 10.1016/j.vacuum.2011.10.012 Qin, 2012, Viscosity sensor using ZnO and AlN thin film bulk acoustic resonators with tilted polar c-axis orientations, J. Appl. Phys., 110 Fu, 2010, Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review, Sensor. Actuator. B, 143, 606, 10.1016/j.snb.2009.10.010 Chen, 2016, The high Q factor lateral field-excited thickness shear mode film bulk acoustic resonator working in liquid, Micromachines, 7, 10.3390/mi7120231 Gunda, 2014, Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker, Appl. Surf. Sci., 305, 522, 10.1016/j.apsusc.2014.03.130 Chen, 2013, Highly sensitive detection of organophosphorus pesticides by acetylcholinesterase-coated thin film bulk acoustic resonator mass-loading sensor, Biosens. Bioelectron., 41, 163, 10.1016/j.bios.2012.08.018 Fujiki, 2014, Carbon dioxide adsorption onto polyethylenimine-functionalized porous chitosan beads, Energy Fuels, 28, 6467, 10.1021/ef500975g March, 2009, A piezoelectric immunosensor for the determination of pesticide residues and metabolites in fruit juices, Talanta, 78, 827, 10.1016/j.talanta.2008.12.058 Chen, 2017, Real-time monitoring of human blood clotting using a lateral excited film bulk acoustic resonator, J. Micromech. Microeng., 27, 10.1088/1361-6439/aa5bbe Song, 2011, A fluoro-microbead guiding chip for simple and quantifiable immunoassay of cardiac troponin I (cTnI), Biosens. Bioelectron., 26, 3818, 10.1016/j.bios.2011.02.036 Wang, 2016, Label-free electrochemical impedance peptide-based biosensor for the detection of cardiac troponin I incorporating gold nanoparticles modified carbon electrode, J. Electroanal. Chem., 781, 212, 10.1016/j.jelechem.2016.08.005 Wang, 2014, Protein-modified shear mode film bulk acoustic resonator for bio-sensing applications, Appl. Phys. Mater. Sci. Process, 116, 1567, 10.1007/s00339-014-8391-6 Přibyl, 2003, Development of piezoelectric immunosensors for competitive and direct determination of atrazine, Sensor. Actuator. B, 91, 333, 10.1016/S0925-4005(03)00107-2