A method with inertial extrapolation step for convex constrained monotone equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Liu, J., Feng, Y.: A derivative-free iterative method for nonlinear monotone equations with convex constraints. Numer. Algorithms 82(1), 245–262 (2019)
Minty, G.J.: Monotone networks. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 257(1289), 194–212 (1960)
Aj, W., Wollenberg, B.: Power Generation, Operation and Control, p. 592. Wiley, New York (1996)
Dirkse, S.P., Ferris, M.C.: MCPLIB: a collection of nonlinear mixed complementarity problems. Optim. Methods Softw. 5(4), 319–345 (1995)
Meintjes, K., Morgan, A.P.: A methodology for solving chemical equilibrium systems. Appl. Math. Comput. 22(4), 333–361 (1987)
Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)
Abubakar, A.B., Kumam, P., Ibrahim, A.H., Chaipunya, P., Rano, S.A.: New hybrid three-term spectral-conjugate gradient method for finding solutions of nonlinear monotone operator equations with applications. Math. Comput. Simul. (2021, in press)
Ibrahim, A.H., Deepho, J., Bala Abubakar, A., Adamu, A.: A three-term Polak–Ribière–Polyak derivative-free method and its application to image restoration. Sci. Afr. 13, e00880 (2021). https://www.sciencedirect.com/science/article/pii/S2468227621001848
Ibrahim, A.H., Kumam, P., Hassan, B.A., Abubakar, A.B., Abubakar, J.: A derivative-free three-term Hestenes–Stiefel type method for constrained nonlinear equations and image restoration. Int. J. Comput. Math. (2021). https://doi.org/10.1080/00207160.2021.1946043
Ibrahim, A.H., Deepho, J., Abubakar, A.B., Aremu, K.O.: A modified Liu–Storey-conjugate descent hybrid projection method for convex constrained nonlinear equations and image restoration. Numer. Algebra Control Optim. (2021). https://doi.org/10.3934/naco.2021022
Ibrahim, A.H., Garba, A.I., Usman, H., Abubakar, J., Abubakar, A.B.: Derivative-free RMIL conjugate gradient method for convex constrained equations. Thai J. Math. 18(1), 212–232 (2019)
Abubakar, A.B., Rilwan, J., Yimer, S.E., Ibrahim, A.H., Ahmed, I.: Spectral three-term conjugate descent method for solving nonlinear monotone equations with convex constraints. Thai J. Math. 18(1), 501–517 (2020)
Ibrahim, A.H., Kumam, P., Abubakar, A.B., Jirakitpuwapat, W., Abubakar, J.: A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing. Heliyon 6(3), e03466 (2020)
Ibrahim, A.H., Kumam, P., Abubakar, A.B., Abubakar, J., Muhammad, A.B.: Least-square-based three-term conjugate gradient projection method for $\ell _{1}$-norm problems with application to compressed sensing. Mathematics 8(4), 602 (2020)
Ibrahim, A.H., Kumam, P., Abubakar, A.B., Yusuf, U.B., Rilwan, J.: Derivative-free conjugate residual algorithms for convex constraints nonlinear monotone equations and signal recovery. J. Nonlinear Convex Anal. 21(9), 1959–1972 (2020)
Abubakar, A.B., Ibrahim, A.H., Muhammad, A.B., Tammer, C.: A modified descent Dai–Yuan conjugate gradient method for constraint nonlinear monotone operator equations. Appl. Anal. Optim. 4, 1–24 (2020)
Abubakar, A.B., Kumam, P., Ibrahim, A.H., Rilwan, J.: Derivative-free HS–DY-type method for solving nonlinear equations and image restoration. Heliyon 6(11), e05400 (2020)
Ibrahim, A.H., Kumam, P., Kumam, W.: A family of derivative-free conjugate gradient methods for constrained nonlinear equations and image restoration. IEEE Access 8, 162714–162729 (2020)
Ibrahim, A.H., Kumam, P., Abubakar, A.B., Yusuf, U.B., Yimer, S.E., Aremu, K.O.: An efficient gradient-free projection algorithm for constrained nonlinear equations and image restoration. AIMS Math. 6(1), 235 (2020)
Abubakar, A.B., Muangchoo, K., Ibrahim, A.H., Muhammad, A.B., Jolaoso, L.O., Aremu, K.O.: A new three-term Hestenes–Stiefel type method for nonlinear monotone operator equations and image restoration. IEEE Access 9, 18262–18277 (2021)
Ibrahima, A.H., Muangchoob, K., Mohamedc, N.S., Abubakard, A.B.: Derivative-free SMR conjugate gradient method for constraint nonlinear equations. J. Math. Comput. Sci. 24(2), 147–164 (2022)
Abubakar, A.B., Muangchoo, K., Ibrahim, A.H., Abubakar, J., Rano, S.A.: FR-type algorithm for finding approximate solutions to nonlinear monotone operator equations. Arab. J. Math. 10, 261–270 (2021)
Abubakar, A.B., Kumam, P., Mohammad, H., Ibrahim, A.H.: PRP-like algorithm for monotone operator equations. Jpn. J. Ind. Appl. Math. 38, 805–822 (2021)
Ibrahim, A.H., Muangchoo, K., Abubakar, A.B., Adedokun, A.D., Spectral, M.H.: Conjugate gradient like method for signal reconstruction. Thai J. Math. 18(4), 2013–2022 (2020)
Ibrahim, A.H., Kumam, P.: Re-modified derivative-free iterative method for nonlinear monotone equations with convex constraints. Ain Shams Eng. J. 12(2), 2205–2210 (2021)
Mohammad, H.: Barzilai–Borwein-like method for solving large-scale non-linear systems of equations. J. Niger. Math. Soc. 36(1), 71–83 (2017)
Abubakar, A.B., Kumam, P.: A descent Dai–Liao conjugate gradient method for nonlinear equations. Numer. Algorithms 81(1), 197–210 (2019)
Abubakar, A.B., Kumam, P.: An improved three-term derivative-free method for solving nonlinear equations. Comput. Appl. Math. 37(5), 6760–6773 (2018)
Abubakar, A.B., Muangchoo, K., Ibrahim, A.H., Fadugba, S.E., Aremu, K.O., Jolaoso, L.O.: A modified scaled spectral-conjugate gradient-based algorithm for solving monotone operator equations. J. Math. 2021, Article ID 5549878 (2021)
Waziri, M.Y., Ahmed, K., Sabi’u, J.: A family of Hager–Zhang conjugate gradient methods for system of monotone nonlinear equations. Appl. Math. Comput. 361, 645–660 (2019)
Waziri, M., Ahmed, K., Sabi’u, J.: A Dai–Liao conjugate gradient method via modified secant equation for system of nonlinear equations. Arab. J. Math. 9, 443–457 (2020)
Sabi’u, J., Shah, A., Waziri, M.Y., Ahmed, K.: Modified Hager–Zhang conjugate gradient methods via singular value analysis for solving monotone nonlinear equations with convex constraint. Int. J. Comput. Methods 2020, 2050043 (2020)
Waziri, M.Y., Hungu, K.A., Descent, S.J.: Perry conjugate gradient methods for systems of monotone nonlinear equations. Numer. Algorithms 85(3), 763–785 (2020)
Waziri, M.Y., Muhammad, H.U., Halilu, A.S., Ahmed, K.: Modified matrix-free methods for solving system of nonlinear equations. Optimization (2020). https://doi.org/10.1080/02331934.2020.1778689
Halilu, A.S., Majumder, A., Waziri, M.Y., Ahmed, K.: Signal recovery with convex constrained nonlinear monotone equations through conjugate gradient hybrid approach. Math. Comput. Simul. 187, 520–539 (2021)
Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput. 28(126), 549–560 (1974)
Li, D., Fukushima, M.: A globally and superlinearly convergent Gauss–Newton-based BFGS method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37(1), 152–172 (1999)
Zhou, G., Toh, K.C.: Superlinear convergence of a Newton-type algorithm for monotone equations. J. Optim. Theory Appl. 125(1), 205–221 (2005)
Zhou, W.J., Li, D.H.: A globally convergent BFGS method for nonlinear monotone equations without any merit functions. Math. Comput. 77(264), 2231–2240 (2008)
Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177–182 (1999)
Chen, P., Huang, J., Zhang, X.: A primal–dual fixed point algorithm for convex separable minimization with applications to image restoration. Inverse Probl. 29(2), 025011 (2013)
Iiduka, H.: Iterative algorithm for triple-hierarchical constrained nonconvex optimization problem and its application to network bandwidth allocation. SIAM J. Optim. 22(3), 862–878 (2012)
Jolaoso, L.O., Alakoya, T., Taiwo, A., Mewomo, O.: Inertial extragradient method via viscosity approximation approach for solving equilibrium problem in Hilbert space. Optimization 70(2), 387–412 (2021)
Abubakar, J., Kumam, P., Ibrahim, A.H., Relaxed, P.A.: Inertial Tseng’s type method for solving the inclusion problem with application to image restoration. Mathematics 8(5), 818 (2020)
Abubakar, J., Kumam, P., Ibrahim, A.H., et al.: Inertial iterative schemes with variable step sizes for variational inequality problem involving pseudomonotone operator. Mathematics 8(4), 609 (2020)
Abubakar, J., Sombut, K., Ibrahim, A.H., et al.: An accelerated subgradient extragradient algorithm for strongly pseudomonotone variational inequality problems. Thai J. Math. 18(1), 166–187 (2019)
Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14(3), 773–782 (2004)
Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9(1), 3–11 (2001)
Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)
Ogwo, G., Izuchukwu, C., Mewomo, O.: Inertial methods for finding minimum-norm solutions of the split variational inequality problem beyond monotonicity. Numer. Algorithms 88, 1419–1456 (2021)
Takahashi, W.: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009)
Auslender, A., Teboulle, M., Ben-Tiba, S.: A logarithmic-quadratic proximal method for variational inequalities. In: Computational Optimization, pp. 31–40. Springer, Berlin (1999)
La Cruz, W., Martínez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems: theory and experiments. Citeseer. Technical report RT-04-08 (2004). https://www.ime.unicamp.br/~martinez/lmrreport.pdf
Li, Q., Li, D.H.: A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J. Numer. Anal. 31(4), 1625–1635 (2011)
La Cruz, W.: A spectral algorithm for large-scale systems of nonlinear monotone equations. Numer. Algorithms 76(4), 1109–1130 (2017)
Yu, Z., Lin, J., Sun, J., Xiao, Y., Liu, L., Li, Z.: Spectral gradient projection method for monotone nonlinear equations with convex constraints. Appl. Numer. Math. 59(10), 2416–2423 (2009)
Lukšan, L., Matonoha, C., Vlcek, J.: Problems for nonlinear least squares and nonlinear equations. Technical report (2018)
Ibrahim, A.H., Kumam, P., Abubakar, A.B., Jirakitpuwapat, W., Abubakar, J.: A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing. Heliyon 6(3), e03466 (2020)