A method to remove end effect for the determination of intrinsic 3D rock strength envelopes

Y.H. Xu1,2,3,4, M. Cai1,2,5,6,7, X.T. Feng1,2,6, X.W. Zhang1,2,6, Y.H. Li1,2,6
1China-Canada Centre of Deep Mining Innovation, Northeastern University, Shenyang, Liaoning, 110819, China
2China-Canada Centre of Deep Mining, Innovation, Laurentian University, Sudbury, Ont., Canada P3E 2C6
3State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
4Alamos Gold Inc., Young Davidson mine, Matachewan, Ont., Canada, P0K 1M0
5Bharti School of Engineering, Laurentian University, Sudbury, Ont., Canada, P3E 2C6
6Key Laboratory of Ministry of Education for Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, 110819, China
7MIRARCO, Laurentian University, Sudbury, Ont., P3E 2C6, Canada

Tài liệu tham khảo

Hudson, 2008, The future for rock mechanics and the ISRMS Brady, 2013 Mogi, 1967, Effect of the intermediate principal stress on rock failure, J Geophys Res, 72, 5117, 10.1029/JZ072i020p05117 Mogi, 2007 Kong, 2018, Study on crack initiation and damage stress in sandstone under true triaxial compression, Int J Rock Mech Min Sci, 106, 117, 10.1016/j.ijrmms.2018.04.019 Gao, 2018, Characteristic stress levels and brittle fracturing of hard rocks subjected to true triaxial compression with low minimum principal stress, Rock Mech Rock Eng, 51, 3681, 10.1007/s00603-018-1548-4 Haimson, 2000, A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite, Int J Rock Mech Min Sci, 37, 285, 10.1016/S1365-1609(99)00106-9 Haimson, 2002, True triaxial strength of the KTB amphibolite under borehole wall conditions and its use to estimate the maximum horizontal in situ stress, J Geophys Res: Solid Earth, 107, 1978 Ma, 2016, Failure characteristics of two porous sandstones subjected to true triaxial stresses, J Geophys Res: Solid Earth, 121, 6477, 10.1002/2016JB012979 Al-Ajmi, 2005, Relation between the Mogi and the coulomb failure criteria, Int J Rock Mech Min Sci, 42, 431, 10.1016/j.ijrmms.2004.11.004 You, 2009, True-triaxial strength criteria for rock, Int J Rock Mech Min Sci, 46, 115, 10.1016/j.ijrmms.2008.05.008 Costamagna, 2007, A four-parameter criterion for failure of geomaterials, Eng Struct, 29, 461, 10.1016/j.engstruct.2006.05.010 Babcock, 1969 Brady, 1971, Effects of inserts on the elastic behavior of cylindrical materials loaded between rough end-plates, Int J Rock Mech Min Sci Geomech Abstr, 8, 357, 10.1016/0148-9062(71)90047-7 Kotsovos, 1983, Effect of testing techniques on the post-ultimate behaviour of concrete in compression, Materiaux Et Construction, 16, 3, 10.1007/BF02474861 Tang, 2000, Numerical studies of the influence of microstructure on rock failure in uniaxial compression—part II: constraint, slenderness and size effect, Int J Rock Mech Min Sci, 37, 571, 10.1016/S1365-1609(99)00122-7 Al-Chalabi, 1974, Stress distribution within circular cylinders in compression, Int J Rock Mech Min Sci Geomech Abstr, 11, 45, 10.1016/0148-9062(74)92648-5 Xu, 2017, Influence of end effect on rock strength in true triaxial compression test, Can Geotech J, 54, 862, 10.1139/cgj-2016-0393 Brown, 1974, Fracture of rock under biaxial loading, 111 Chang, 2005, Non-dilatant deformation and failure mechanism in two Long Valley Caldera rocks under true triaxial compression, Int J Rock Mech Min Sci, 42, 402, 10.1016/j.ijrmms.2005.01.002 Babcock, 1968 Thuro, 2001, Scale effects in rock strength properties. Part 1: unconfined compressive test and Brazilian test, 169 Gerstle, 1980, Behavior of concrete under multiaxial stress states, J Eng Mech Div, 106, 1383, 10.1061/JMCEA3.0002671 Meikle, 1965, The effect of friction on the strength of model coal pillars, Trans Soc Mining Eng, 232, 322 Pellegrino, 1997, The effects of slenderness and lubrication on the uniaxial behavior of a soft limestone, Int J Rock Mech Min Sci, 34, 333, 10.1016/S0148-9062(96)00031-9 Liang, 2015, The effect of specimen shape and strain rate on uniaxial compressive behavior of rock material, Bull Eng Geol Environ, 1 Jaeger, 2007 Hoek, 2000 Bobet, 2001, Influence of the loading apparatus on the stresses within biaxial specimens, ASTM Geotechnical Testing Journal, 24, 256, 10.1520/GTJ11345J Xu, 2017, Influence of loading system stiffness on the post-peak behavior of stable rock failures, Rock Mech Rock Eng, 50, 2255, 10.1007/s00603-017-1231-1 Feng, 2016, A novel Mogi type true triaxial testing apparatus and its use to obtain complete stress–strain curves of hard rocks, Rock Mech Rock Eng, 49, 1649, 10.1007/s00603-015-0875-y Chang, 2000, True triaxial strength and deformability of the German Continental Deep Drilling Program (KTB) deep hole amphibolite, J Geophys Res: Solid Earth, 105, 18999, 10.1029/2000JB900184 Fan, 2017, End friction effect of Mogi typeof true-triaxial test apparatus (in Chinese), Chin J Rock Mech Eng, 36, 2720 Ingraham, 2013, Response of Castlegate sandstone to true triaxial states of stress, J Geophys Res: Solid Earth, 118, 536, 10.1002/jgrb.50084 Wiebols, 1968, An energy criterion for the strength of rock in polyaxial compression, Int J Rock Mech Min Sci Geomech Abstr, 5, 529, 10.1016/0148-9062(68)90040-5 Brady, 1969, Effect of the intermediate principal stress on the fracture of brittle rock Single, 1998, Effect of intermediate principal stress on strength of anisotropic rock mass, Tunn Undergr Space Technol, 13, 71, 10.1016/S0886-7798(98)00023-6 Yu, 2002, Advances in strength theories for materials under complex stress state in the 20th century, Appl Mech Rev, 55, 169, 10.1115/1.1472455 Martin, 1997, Seventeenth Canadian geotechnical colloquium: the effect of cohesion loss and stress path on brittle rock strength, Canadian Geotech. J., 10.1139/t97-030 Li, 2012, In situ monitoring of rockburst nucleation and evolution in the deeply buried tunnels of Jinping II hydropower station, Eng. Geol., 10.1016/j.enggeo.2012.03.010 Rojat, 2009, Brittle rock failure in the Steg lateral adit of the Lötschberg base tunnel, Rock Mech. Rock Eng., 10.1007/s00603-008-0015-z Andersson, 2009, The Äspö pillar stability experiment: Part I—Experiment design, Inte. J. Rock Mech. Min. Sci., 10.1016/j.ijrmms.2009.02.010