A method for real-time mechanical characterisation of microcapsules
Tóm tắt
Characterising the mechanical properties of flowing microcapsules is important from both fundamental and applied points of view. In the present study, we develop a novel multilayer perceptron (MLP)-based machine learning (ML) approach, for real-time simultaneous predictions of the membrane mechanical law type, shear and area-dilatation moduli of microcapsules, from their camera-recorded steady profiles in tube flow. By MLP, we mean a neural network where many perceptrons are organised into layers. A perceptron is a basic element that conducts input–output mapping operation. We test the performance of the present approach using both simulation and experimental data. We find that with a reasonably high prediction accuracy, our method can reach an unprecedented low prediction latency of less than 1 millisecond on a personal computer. That is the overall computational time, without using parallel computing, from a single experimental image to multiple capsule mechanical parameters. It is faster than a recently proposed convolutional neural network-based approach by two orders of magnitude, for it only deals with the one-dimensional capsule boundary instead of the entire two-dimensional capsule image. Our new approach may serve as the foundation of a promising tool for real-time mechanical characterisation and online active sorting of deformable microcapsules and biological cells in microfluidic devices.
Tài liệu tham khảo
Abadi M, Barham P, Chen J, etal (2016) Tensorflow: A system for large-scale machine learning. In: 12th USENIX symposium on operating systems design and implementation (OSDI 16). USENIX Association, Savannah, GA, pp 265–283, https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
Balogh P, Gounley J, Roychowdhury S (2021) A data-driven approach to modeling cancer cell mechanics during microcirculatory transport. Sci Rep 11(1):1–18. https://doi.org/10.1038/s41598-021-94445-5
Barthés-Biesel D (2016) Motion and deformation of elastic capsules and vesicles in flow. Annu Rev Fluid Mech 48(1):25–52. https://doi.org/10.1146/annurev-fluid-122414-034345
Bhujbal SV, deVos P, Niclou SP (2014) Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors. Adv Drug Deliver Rev 67:142–153. https://doi.org/10.1016/j.addr.2014.01.010
Bouzidi M, Firdaouss M, Lallemand P (2001) Momentum transfer of a boltzmann-lattice fluid with boundaries. Phys Fluids 13(11):3452. https://doi.org/10.1063/1.1399290
Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci 113(15):3932–3937. https://doi.org/10.1073/pnas.1517384113
Carin M, Barthès-Biesel D, Edwards-Lévy F et al (2003) Compression of biocompatible liquid-filled hsa-alginate capsules: determination of the membrane mechanical properties. Biotechnol Bioeng 82(2):207–212. https://doi.org/10.1002/bit.10559
Chang KS, Olbricht WL (1993) Experimental studies of the deformation and breakup of a synthetic capsule in steady and unsteady simple shear flow. J Fluid Mech 250:609–633. https://doi.org/10.1017/S0022112093001582
Chen CL, Mahjoubfar A, Tai LC et al (2016) Deep learning in label-free cell classification. Sci Rep 6(1):1–16. https://doi.org/10.1038/srep21471
Chu T, Salsac AV, Barthès-Biesel D et al (2013) Fabrication and in situ characterization of microcapsules in a microfluidic system. Microfluid Nanofluidics 14(1):309–317. https://doi.org/10.1007/s10404-012-1049-9
Cordasco D, Bagchi P (2013) Orbital drift of capsules and red blood cells in shear flow. Phys Fluids 25(9):091–902. https://doi.org/10.1063/1.4820472
Cui J, Liu Y, Xiao L (2021) Numerical study on the adhesion of a circulating tumor cell in a curved microvessel. Biomech Model Mechanobiol 20(1):243–254. https://doi.org/10.1007/s10237-020-01380-x
deLoubens C, Deschamps J, Georgelin M et al (2014) Mechanical characterization of cross-linked serum albumin microcapsules. Soft Matter 10(25):4561–4568. https://doi.org/10.1039/C4SM00349G
deLoubens C, Deschamps J, Boedec G et al (2015) Stretching of capsules in an elongation flow, a route to constitutive law. J Fluid Mech 767:R3. https://doi.org/10.1017/jfm.2015.69
deLoubens C, Deschamps J, Edwards-Lévy F et al (2016) Tank-treading of microcapsules in shear flow. J Fluid Mech 789:750–767. https://doi.org/10.1017/jfm.2015.758
Dubuisson MP, Jain AK (1994) A modified hausdorff distance for object matching. In: proceedings of 12th international conference on pattern recognition, IEEE, pp 566–568, https://doi.org/10.1109/ICPR.1994.576361
Dupont C, Salsac AV, Barthes-Biesel D, etal (2015) Influence of bending resistance on the dynamics of a spherical capsule in shear flow. Phys Fluids 27(5):051,902. https://doi.org/10.1063/1.4921247
Freund JB (2014) Numerical simulation of flowing blood cells. Annu Rev Fluid Mech 46:67–95. https://doi.org/10.1146/annurev-fluid-010313-141349
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press, Cambridge, Massachusetts
Gubspun J, Gires PY, Loubens Cd et al (2016) Characterization of the mechanical properties of cross-linked serum albumin microcapsules: effect of size and protein concentration. Colloid Polym Sci 294(8):1381–1389. https://doi.org/10.1007/s00396-016-3885-8
Guo ZL, Zheng CG, Shi BC (2002) Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice boltzmann method. Chin Phys 11(4):366. https://doi.org/10.1088/1009-1963/11/4/310
Häner E, Vesperini D (2021) Sorting of capsules according to their stiffness: from principle to application. Soft Matter 17(13):3722–3732. https://doi.org/10.1039/D0SM02249G
Häner E, Heil M, Juel A (2020) Deformation and sorting of capsules in a t-junction. J Fluid Mech. https://doi.org/10.1017/jfm.2019.979
Hu XQ, Sévénié B, Salsac AV et al (2013) Characterizing the membrane properties of capsules flowing in a square-section microfluidic channel: effects of the membrane constitutive law. Phys Rev E 87(6):008–063. https://doi.org/10.1103/PhysRevE.87.063008
Husmann M, Rehage H, Dhenin E et al (2005) Deformation and bursting of nonspherical polysiloxane microcapsules in a spinning-drop apparatus. J Colloid Interf Sci 282(1):109–119. https://doi.org/10.1016/j.jcis.2004.08.129
Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: proceedings of the 32nd international conference on machine learning, Lille, France, pp 448–456
Isozaki A, Mikami H, Tezuka H et al (2020) Intelligent image-activated cell sorting 2.0. Lab Chip 20(13):2263–2273. https://doi.org/10.1039/d0lc00080a
Jones G, Parr J, Nithiarasu P et al (2021) Machine learning for detection of stenoses and aneurysms: application in a physiologically realistic virtual patient database. Biomech Model Mechanobiol 20(6):2097–2146. https://doi.org/10.1007/s10237-021-01497-7
Karniadakis GE, Kevrekidis IG, Lu L et al (2021) Physics-informed machine learning. Nat Rev Phys 3(6):422–440. https://doi.org/10.1038/s42254-021-00314-5
Kingma DP, Ba JL (2014) Adam: a method for stochastic optimization. arXiv:1412.6980
Langtangen HP (2008) Python scripting for computational science. Springer, Oslo, Norway
Laumann M, Schmidt W, Farutin A et al (2019) Emerging attractor in wavy poiseuille flows triggers sorting of biological cells. Phys Rev Lett 122(12):002–128. https://doi.org/10.1103/PhysRevLett.122.128002
Lefebvre Y, Barthes-Biesel D (2007) Motion of a capsule in a cylindrical tube: effect of membrane pre-stress. J Fluid Mech 589:157–181. https://doi.org/10.1017/S0022112007007586
Lefebvre Y, Leclerc E, Barthès-Biesel D et al (2008) Flow of artificial microcapsules in microfluidic channels: a method for determining the elastic properties of the membrane. Phys Fluids 20(12):102–123. https://doi.org/10.1063/1.3054128
Lin T, Wang Z, Lu R et al (2021) A high-throughput method to characterize membrane viscosity of flowing microcapsules. Phys Fluids 33(1):011–906. https://doi.org/10.1063/5.0031640
Lin T, Wang Z, Wang W et al (2021) A neural network-based algorithm for high-throughput characterisation of viscoelastic properties of flowing microcapsules. Soft Matter 17(15):4027–4039
Lin T, Wang Z, Lu R et al (2022) Characterising mechanical properties of flowing microcapsules using a deep convolutional neural network. Adv Appl Math Mech 14(1):79–100. https://doi.org/10.4208/aamm.OA-2020-0357
Lu R, Wang Z, Salsac AV et al (2021) Path selection of a train of spherical capsules in a branched microchannel. J Fluid Mech 923:11. https://doi.org/10.1017/jfm.2021.571
Maestre J, Pallares J, Cuesta I et al (2019) Dynamics of a capsule flowing in a tube under pulsatile flow. J Mech Behav Biomed 90:441–450. https://doi.org/10.1016/j.jmbbm.2018.10.025
Mayfield AE, Tilokee EL, Latham N et al (2014) The effect of encapsulation of cardiac stem cells within matrix-enriched hydrogel capsules on cell survival, post-ischemic cell retention and cardiac function. Biomaterials 35(1):133–142. https://doi.org/10.1016/j.biomaterials.2013.09.085
Mietke A, Otto O, Girardo S et al (2015) Extracting cell stiffness from real-time deformability cytometry: theory and experiment. Biophys J 109(10):2023–2036. https://doi.org/10.1016/j.bpj.2015.09.006
Nawaz AA, Urbanska M, Herbig M et al (2020) Intelligent image-based deformation-assisted cell sorting with molecular specificity. Nat Methods 17(6):595–599. https://doi.org/10.1038/s41592-020-0831-y
Nitta N, Sugimura T, Isozaki A et al (2018) Intelligent image-activated cell sorting. Cell 175(1):266–276. https://doi.org/10.1016/j.cell.2018.08.028
Peirlinck M, Costabal FS, Sack K et al (2019) Using machine learning to characterize heart failure across the scales. Biomech Model Mechanobiol 18(6):1987–2001. https://doi.org/10.1007/s10237-019-01190-w
Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25(3):220–252. https://doi.org/10.1016/0021-9991(77)90100-0
Phillip JM, Han KS, Chen WC et al (2021) A robust unsupervised machine-learning method to quantify the morphological heterogeneity of cells and nuclei. Nat Protoc 16(2):754–774. https://doi.org/10.1038/s41596-020-00432-x
Pieper G, Rehage H, Barthès-Biesel D (1998) Deformation of a capsule in a spinning drop apparatus. J Colloid Interf Sci 202(2):293–300. https://doi.org/10.1006/jcis.1998.5438
Podskočová J, ChorvátJr D, Kollároková G et al (2005) Characterization of polyelectrolyte microcapsules by confocal laser scanning microscopy and atomic force microscopy. Laser Phys 15(4):545–551
Pozrikidis C (2003) Modeling and simulation of capsules and biological cells. CRC Press, London, England
Pozrikidis C (2003) Numerical simulation of the flow-induced deformation of red blood cells. Ann Biomed Eng 31(10):1194–1205. https://doi.org/10.1114/1.1617985
Rachik M, Barthès-Biesel D, Carin M et al (2006) Identification of the elastic properties of an artificial capsule membrane with the compression test: effect of thickness. J Colloid Interf Sci 301(1):217–226. https://doi.org/10.1016/j.jcis.2006.04.062
Rahmat A, Barigou M, Alexiadis A (2019) Deformation and rupture of compound cells under shear: a discrete multiphysics study. Phys Fluids 31(5):051–903. https://doi.org/10.1063/1.5091999
Risso F, Carin M (2004) Compression of a capsule: mechanical laws of membranes with negligible bending stiffness. Phys Rev E 69(6):061–601. https://doi.org/10.1103/PhysRevE.69.061601
Risso F, CollÉ-Paillot F, Zagzoule M (2006) Experimental investigation of a bioartificial capsule flowing in a narrow tube. J Fluid Mech 547:149–173. https://doi.org/10.1017/S0022112005007652
Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodol Comput Appl 1(2):127–190. https://doi.org/10.1023/A:1010091220143
Saadat A, Huyke DA, Oyarzun DI et al (2020) A system for the high-throughput measurement of the shear modulus distribution of human red blood cells. Lab Chip 20(16):2927–2936. https://doi.org/10.1039/D0LC00283F
Saxby DJ, Killen BA, Pizzolato C et al (2020) Machine learning methods to support personalized neuromusculoskeletal modelling. Biomech Model Mechanobiol 19(4):1169–1185. https://doi.org/10.1007/s10237-020-01367-8
Sekar V, Zhang M, Shu C et al (2019) Inverse design of airfoil using a deep convolutional neural network. Aiaa J 57(3):993–1003. https://doi.org/10.2514/1.J057894
Skalak R, Tozeren A, Zarda R et al (1973) Strain energy function of red blood cell membranes. Biophys J 13(3):245–264. https://doi.org/10.1016/S0006-3495(73)85983-1
Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958
Sui Y, Chew YT, Roy P et al (2008) Dynamic motion of red blood cells in simple shear flow. Phys Fluids 20(11):106–112. https://doi.org/10.1063/1.3026569
Sui Y, Chew YT, Roy P et al (2008) A hybrid method to study flow-induced deformation of three-dimensional capsules. J Comput Phys 227(12):6351–6371. https://doi.org/10.1016/j.jcp.2008.03.017
Sui Y, Chen X, Chew Y et al (2010) Numerical simulation of capsule deformation in simple shear flow. Comput Fluids 39(2):242–250. https://doi.org/10.1016/j.compfluid.2009.09.001
Suzuki S, Abe K (1985) Topological structural analysis of digitized binary images by border following. Comput Vision Graph 30(1):32–46. https://doi.org/10.1016/0734-189X(85)90016-7
Takeishi N, Imai Y, Yamaguchi T et al (2015) Flow of a circulating tumor cell and red blood cells in microvessels. Phys Rev E 92(6):11–063. https://doi.org/10.1103/PhysRevE.92.063011
Walter A, Rehage H, Leonhard H (2001) Shear induced deformation of microcapsules: shape oscillations and membrane folding. Colloid Surface A 183:123–132. https://doi.org/10.1016/S0927-7757(01)00564-7
Wang Z, Sui Y, Salsac AV et al (2016) Motion of a spherical capsule in branched tube flow with finite inertia. J Fluid Mech 806:603–626. https://doi.org/10.1017/jfm.2016.603
Wang Z, Sui Y, Salsac AV et al (2018) Path selection of a spherical capsule in a microfluidic branched channel: towards the design of an enrichment device. J Fluid Mech 849:136–162. https://doi.org/10.1017/jfm.2018.414
Wang XY, Merlo A, Dupont C et al (2021) A microfluidic methodology to identify the mechanical properties of capsules: comparison with a microrheometric approach. Flow. https://doi.org/10.1017/flo.2021.8
Wu PH, Aroush DRB, Asnacios A et al (2018) A comparison of methods to assess cell mechanical properties. Nat Methods 15:491–498. https://doi.org/10.1038/s41592-018-0015-1
Xiao L, Liu Y, Chen S et al (2017) Effects of flowing RBCS on adhesion of a circulating tumor cell in microvessels. Biomech Model Mechanobiol 16(2):597–610. https://doi.org/10.1007/s10237-016-0839-5
Xie K, DeLoubens C, Dubreuil F et al (2017) Interfacial rheological properties of self-assembling biopolymer microcapsules. Soft matter 13(36):6208–6217. https://doi.org/10.1039/C7SM01377A
Zhong-can OY, Helfrich W (1989) Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys Rev A 39(10):5280. https://doi.org/10.1103/PhysRevA.39.5280
Zhou Z, Ngan AHW, Tang B et al (2012) Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope. J Mech Behav Biomed 8:134–142. https://doi.org/10.1016/j.jmbbm.2011.11.010
Zhu Y, Tian FB, Young J et al (2021) A numerical study of fish adaption behaviors in complex environments with a deep reinforcement learning and immersed boundary-lattice boltzmann method. Sci Rep 11(1):1–20. https://doi.org/10.1038/s41598-021-81124-8