Khung zeolitic hữu cơ kim loại với urease đã được cố định để ứng dụng trong cảm biến sinh học ure trên sợi quang học có đầu nhọn

Microchimica Acta - Tập 187 - Trang 1-9 - 2019
Guixian Zhu1, Lin Cheng1, Ruogu Qi2, Mizhen Zhang1, Jiahao Zhao3, Lianqing Zhu1,4, Mingli Dong1
1School of Instrument Science and Opto-electronics Engineering, Beijing information Science and Technology University, Beijing, China
2Department of Nanomedicine, Houston Methodist Research Institute, Houston, USA
3Beijing Innovation Center for Future Chips, Tsinghua University, Beijing, China
4School of Instrument and Opto-electronics Engineering, Hefei University of Technology, Anhui, China

Tóm tắt

Một cấu trúc sợi quang học đơn mode không lõi (SCS) có đầu nhọn với độ nhạy cao cho việc cảm biến chỉ số khúc xạ đã được mô tả. Để đạt được độ đặc hiệu cao cho các cảm biến sinh học quang học, ở đây, màng bao bọc enzyme đã được tạo ra bằng cách nhúng urease vào khung zeolitic imidazolate (ZIF-8/urease) thông qua phương pháp phát triển tại chỗ trên các sợi không lõi. Việc xác định ure ở đây được thực hiện thông qua việc giám sát trực tuyến sự liên kết của nó với urease trong khung zeolitic imidazolate. Sự thay đổi chỉ số khúc xạ dẫn đến sự dịch chuyển bước sóng của cảm biến sinh học sợi quang. Bước sóng cộng hưởng cho thấy mối quan hệ tuyến tính tốt với nồng độ ure trong khoảng từ 1 đến 10 mM với giới hạn phát hiện là 0.1 mM và độ nhạy là 0.8 mM/RIU (đơn vị chỉ số khúc xạ) nếu được vận hành với nguồn sáng băng thông rộng có bước sóng từ 1525 nm đến 1590 nm. Đánh giá cuối cùng về cảm biến sinh học quang học trên mẫu thực tế đã được thực hiện, nơi hiệu suất tuyệt vời về độ nhạy và độ chọn lọc đã được quan sát.

Từ khóa

#cảm biến sinh học quang #urease #chỉ số khúc xạ #khung zeolitic imidazolate #sợi quang học đơn mode

Tài liệu tham khảo

Li L, Liang Y, Liu Q, Peng W (2016) Dual-Channel Fiber-optic biosensor for self-compensated refractive index measurement. IEEE Photon Technol Lett 28(19):2110–2113 Baliyan A, Sital S, Tiwari U, Gupta R, Sharma EK (2016) Long period fiber grating based sensor for the detection of triacylglycerides. Biosens Bioelectron 79:693–700 André RM, Warren-Smith SC, Becker M, Dellith J, Rothhardt M, Zibaii MI, Latifi H, Marques MB, Bartelt H, Frazão O (2016) Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips. Opt Express 24(13):14053–14065 Zhang S, Zhao Z, Chen N, Pang F, Chen Z, Liu Y, Wang T (2015) Temperature characteristics of silicon core optical fiber Fabry-Perot interferometer. Opt Lett 40(7):1362–1365 Hao S, Hu M, Rong Q, Du Y, Yang H, Qiao X (2014) High sensitivity optical fiber temperature sensor based on the temperature cross-sensitivity feature of RI-sensitive device. Opt Commun 323(14):28–31 Xu J, Pickrell G, Wang X, Wei P, Cooper K, Wang A (2005) A novel temperature-insensitive optical fiber pressure sensor for harsh environments. IEEE Photon Technol Lett 17(4):870–872 Monzon-Hernandez D, Martinez-Rios A, Torres-Gomez I, Salceda-Delgado G (2011) Compact optical fiber curvature sensor based on concatenating two tapers. Opt Lett 36(22):4380–4382 Wang XD, Wolfbeis OS (2016) Fiber-optic chemical sensors and biosensors (2013-2015). Anal Chem 88(1):203–227 Wang XD, Wolfbeis OS (2019) Fiber-Optic Chemical Sensors and Biosensors (2015-2019). Anal Chem, on the web. DOI: https://doi.org/10.1021/acs.analchem.9b04708 Guo T, Liu F, Liang X, Qiu X, Huang Y, Xie C, Xu P, Mao W, Guan BO, Albert J (2016) Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings. Biosens Bioelectron 78:221–228 Hromadka J, Tokay B, James S, Tatam RP, Korposh S (2015) Optical fibre long period grating gas sensor modified with metal organic framework thin films. Sensor Actuat B-Chem 221:891–899 Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sensors Actuators B Chem 12(3):213–220 Katarzyna G, Tadeusz M, Maciej N, Kinga Z, Pawel M, Waclaw U (2017) A surface plasmon resonance sensor based on a single mode D-shape polymer optical fiber. J Opt 19(2):025001 Lee B, Park J-H, Byun J-Y, Kim JH, Kim M-G (2018) An optical fiber-based LSPR aptasensor for simple and rapid in-situ detection of ochratoxin a. Biosens Bioelectron 102:504–509 Menon PS, Said FA, Mei GS, Berhanuddin DD, Umar AA, Shaari S, Majlis BY (2018) Urea and creatinine detection on nano-laminated gold thin film using Kretschmann-based surface plasmon resonance biosensor. PLoS One 13(7):e0201228–e0201228 Mishra S K, Gupta B D, Surface plasmon resonance (SPR) based fiber optic urea sensor using silver, ITO and enzyme entrapped gel layers, in: Frontiers in Optics 2014, Optical Society of America, Tucson, Arizona, 2014, pp. FTu5B.3 Yin MJ, Huang B, Gao S, Zhang AP, Ye X (2016) Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection. Biomed Opt Express 7(5):2067–2077 Tan Y, Sun L-P, Jin L, Li J, Guan B-O (2013) Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications. Opt Express 21(1):154–164 Li K, Liu G, Wu Y, Hao P, Zhou W, Zhang Z (2014) Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum. Talanta 120(Supplement C):419–424 Tripathi SM, Kumar A, Varshney RK, Kumar YBP, Marin E, Meunier JP (2009) Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures. J Lightwave Technol 27(13):2348–2356 Liu ZB, Tan Z, Yin B, Bai Y, Jian S (2014) Refractive index sensing characterization of a singlemode-claddingless-singlemode fiber structure based fiber ring cavity laser. Opt Express 22(5):5037–5042 Tyagi D, Mishra SK, Zou B, Lin C, Hao T, Zhang G, Lu A, Chiang KS, Yang Z (2018) Nano-functionalized long-period fiber grating probe for disease-specific protein detection. J Mater Chem B 6(3):386–392 Tam JM, Song L, Walt DR (2009) DNA detection on ultrahigh-density optical fiber-based nanoarrays. Biosens Bioelectron 24(8):2488–2493 Jiang B, Zhou K, Wang C, Sun Q, Yin G, Tai Z, Wilson K, Zhao J, Zhang L (2018) Label-free glucose biosensor based on enzymatic graphene oxide-functionalized tilted fiber grating. Sensors and Actuators B: Chemical 254(Supplement C):1033–1039 Baliyan A, Bhatia P, Gupta BD, Sharma EK, Kumari A, Gupta R (2013) Surface plasmon resonance based fiber optic sensor for the detection of triacylglycerides using gel entrapment technique. Sensors Actuators B Chem 188:917–922 Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, Mudie S, Haylock D, Hill AJ, Doonan CJ, Falcaro P (2015) Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun 6:7240 Lyu F, Zhang Y, Zare RN, Ge J, Liu Z (2014) One-pot synthesis of protein-embedded metal–organic frameworks with enhanced biological activities. Nano Lett 14(10):5761–5765 Shieh F-K, Wang S-C, Yen C-I, Wu C-C, Dutta S, Chou L-Y, Morabito JV, Hu P, Hsu M-H, Wu KCW, Tsung C-K (2015) Imparting functionality to biocatalysts via embedding enzymes into Nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal–organic framework microcrystals. J Am Chem Soc 137(13):4276–4279 Nazari M, Forouzandeh MA, Divarathne CM, Sidiroglou F, Martinez MR, Konstas K, Muir BW, Hill AJ, Duke MC, Hill MR, Collins SF (2016) UiO-66 MOF end-face-coated optical fiber in aqueous contaminant detection. Opt Lett 41(8):1696–1699 Hou C, Wang Y, Ding Q, Jiang L, Li M, Zhu W, Pan D, Zhu H, Liu M (2015) Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor. Nanoscale 7(44):18770–18779 Wu X, Yang C, Ge J, Liu Z (2015) Polydopamine tethered enzyme/metal-organic framework composites with high stability and reusability. Nanoscale 7(45):18883–18886 Doonan C, Riccò R, Liang K, Bradshaw D, Falcaro P (2017) Metal–organic frameworks at the biointerface: synthetic strategies and applications. Acc Chem Res 50(6):1423–1432 Alqasaimeh M, Heng LY, Ahmad M, Raj AS, Ling TL (2014) A large response range reflectometric urea biosensor made from silica-gel nanoparticles. Sensors (Basel) 14(7):13186–13209 Swati M, Hase NK, Srivastava R (2010) Nanoengineered optical urea biosensor for estimating hemodialysis parameters in spent dialysate. Anal Chim Acta 676(1):68–74 Bhatia P, Gupta BD (2012) Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications. Sensors Actuators B Chem 161(1):434–438 de Marcos S, Hortigüela R, Gatbán J, Castillo J R, Wolfbeis O S J M A (1999) Characterization of a urea optical sensor based on polypyrrole. 130(4):267–272 Mehta J, Bhardwaj N, Bhardwaj SK, Kim K-H, Deep A (2016) Recent advances in enzyme immobilization techniques: metal-organic frameworks as novel substrates. Coordination Chemistry Reviews 322(Supplement C):30–40