A metal-free polymeric photocatalyst for hydrogen production from water under visible light

Nature Materials - Tập 8 Số 1 - Trang 76-80 - 2009
Xinchen Wang1, Kazuhiko Maeda2, Arne Thomas1, Kazuhiro Takanabe2, Gang Xin2, Johan M. Carlsson3, Kazunari Domen2, Markus Antonietti1
1Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Postdam, Germany
2Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
3Theory Department, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, D-14195 Berlin, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Borgarello, E. et al. Photochemical cleavage of water by photocatalysis. Nature 289, 158–160 (1981).

Kim, Y. I., Salim, S., Huq, M. J. & Mallouk, T. E. Visible-light photolysis of hydrogen iodide using sensitized layered semiconductor particles. J. Am. Chem. Soc. 113, 9561–9563 (1991).

Khaselev, O. & Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

Sayama, K. et al. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO−3/I− shuttle redox mediator under visible light irradiation. Chem. Commun. 2416–2417 (2001).

Kato, H. & Kudo, A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J. Phys. Chem. B 106, 5029–5034 (2002).

Hitoki, G. et al. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ≤500 nm). Chem. Commun. 1698–1699 (2002).

Ishikawa, A. et al. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤650 nm). J. Am. Chem. Soc. 124, 13547–13553 (2002).

Tsuji, I., Kato, H., Kobayashi, H. & Kudo, A. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)(x)Zn2(1−x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J. Am. Chem. Soc. 126, 13406–13413 (2004).

Tsuji, I., Kato, H. & Kudo, A. Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS–CuInS2–AgInS2 solid-solution photocatalyst. Angew. Chem. Int. Ed. 44, 3565–3568 (2005).

Maeda, K. et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 127, 8286–8287 (2005).

Maeda, K. et al. Photocatalyst releasing hydrogen from water—Enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440, 295 (2006).

Lee, Y. et al. Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J. Phys. Chem. C 111, 1042–1048 (2007).

Yachandra, V. K. et al. Where plants make oxygen—a structural model for the photosynthetic oxygen-evolving manganese cluster. Science 260, 675–679 (1993).

de Carcer, I. A., DiPasquale, A., Rheingold, A. L. & Heinekey, D. M. Active-site models for iron hydrogenases: Reduction chemistry of dinuclear iron complexes. Inorg. Chem. 45, 8000–8002 (2006).

Yanagida, S., Kabumoto, A., Mizumoto, K., Pac, C. & Yoshino, K. Poly(para)phenylene-catalyzed photoreduction of water to hydrogen. JCS-Chem. Commun. 8, 474–475 (1985).

Liebig, J. About some nitrogen compounds. Ann. Pharm. 10, 10 (1834).

Groenewolt, M. & Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 17, 1789–1792 (2005).

Goettmann, F., Fischer, A., Antonietti, M. & Thomas, A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. Angew. Chem. Int. Ed. 45, 4467–4471 (2006).

Clark, S. J. et al. First principles methods using CASTEP. Z. f Krist 220, 567–570 (2005).

Lotsch, B. V. et al. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer. Chem. Eur. J. 13, 4969–4980 (2007).

Reuter, K. & Scheffler, M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 65, 035406 (2001).

Tissandier, M. D. et al. The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J. Phys. Chem. A 102, 7787–7794 (1998).

Weast, R. C., Astle, M. J. & Beyer, W. H. Handbook of Physics and Chemistry 64th edn, D158 (CRC Press, 1983).

Kraeutler, B & Bard, A. J. Heterogeneous photocatalytic preparation of supported catalysts—photodeposition of platinum on TiO2 powder and other substrates. J. Am. Chem. Soc. 100, 4317–4318 (1978).

Maeda, K. & Domen, K. New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111, 7851–7861 (2007).

Kalyanasundaram, K. & Grätzel, M. Cyclic cleavage of water into H2 and O2 by visible light with coupled redox catalysts. Angew. Chem. Int. Ed. 18, 701–702 (1979).

Borgarello, E., Kiwi, J., Pelizzetti, E., Visca, M. & Grätzel, M. Photochemical cleavage of water by photocatalysis. Nature 289, 158–160 (1981).

Harriman, A., Pickering, I. J., Thomas, J. M. & Christensen, P. A. Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J. Chem. Soc. Faraday Trans. 1 84, 2795–2806 (1988).