A meshless Chebyshev collocation method for eigenvalue problems of the Helmholtz equation
Tài liệu tham khảo
Bruno, 2015, A Fourier continuation method for the solution of elliptic eigenvalue problems in general domains, Math Probl Eng, 2015, 1, 10.1155/2015/184786
Trefethen, 2015
Gutzwiller, 1992, Quantum chaos, SciAm, 266, 78
Scheben, 2011, Iterative methods for neutron transport eigenvalue problems, Siam J Sci Comput, 33, 2785, 10.1137/100799022
Fu, 2020, A localized meshless collocation method for bandgap calculation of anti-plane waves in 2D solid phononic crystals, Eng Anal Bound Elem, 119, 162, 10.1016/j.enganabound.2020.07.014
Fu, 2020, Hybrid FEM–SBM solver for structural vibration induced underwater acoustic radiation in shallow marine environment, Comput Method Appl Mech Eng, 369, 10.1016/j.cma.2020.113236
Lee, 2017, Immersed finite element method for eigenvalue problem, J Comput Appl Math, 313, 410, 10.1016/j.cam.2016.09.035
Hong, 2018, A multilevel correction type of adaptive finite element method for eigenvalue problems, SIAM J Sci Comput, 40, A4208, 10.1137/17M1138157
Dai, 2008, Convergence and optimal complexity of adaptive finite element eigenvalue computations, Numer Math, 110, 313, 10.1007/s00211-008-0169-3
Canuto, 2019, Adaptive hp-FEM for eigenvalue computations, Calcolo, 56, 39, 10.1007/s10092-019-0335-2
Armentano, 2011, An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations, Comput Method Appl Mech Eng, 200, 178, 10.1016/j.cma.2010.08.003
Jirousek, 1996, Application of hybrid-Trefftz element approach to transient heat conduction analysis, Comput Struct, 58, 195, 10.1016/0045-7949(95)00115-W
Wang, 2006, A meshless model for transient heat conduction in functionally graded materials, Comput Mech, 38, 51, 10.1007/s00466-005-0720-3
Gu, 2020, A meshless method for solving three-dimensional time fractional diffusion equation with variable-order derivatives, Appl Math Model, 78, 539, 10.1016/j.apm.2019.09.055
Golbabai, 2012, A meshfree method based on radial basis functions for the eigenvalues of transient Stokes equations, Eng Anal Bound Elem, 36, 1555, 10.1016/j.enganabound.2012.04.001
Wang, 2020, A domain-decomposition generalized finite difference method for stress analysis in three-dimensional composite materials, Appl Math Lett, 104, 10.1016/j.aml.2020.106226
Jones, 2017, Computing ultra-precise eigenvalues of the Laplacian within polygons, Adv Comput Math, 43, 1325, 10.1007/s10444-017-9527-y
Effenberger, 2012, Chebyshev interpolation for nonlinear eigenvalue problems, BIT, 52, 933, 10.1007/s10543-012-0381-5
Fox, 1967, Approximations and bounds for eigenvalues of elliptic operators, SIAM J Numer Anal, 4, 89, 10.1137/0704008
Bai, 2019, A direct Chebyshev collocation method for the numerical solutions of three-dimensional Helmholtz-type equations, Eng Anal Bound Elem, 104, 26, 10.1016/j.enganabound.2019.03.023
Cao, 2010, An RBF–MFS model for analysing thermal behaviour of skin tissues, Int J Heat MassTransf, 53, 1298, 10.1016/j.ijheatmasstransfer.2009.12.036
Denda, 2004, Time-harmonic BEM for 2-D piezoelectricity applied to eigenvalue problems, Int J Solids Struct, 41, 7241, 10.1016/j.ijsolstr.2004.06.052
Gao, 2011, Eigenvalue analysis for 2D acoustic problem by BEM with block SS method, Transf JASCOME, 11, 59
Wang, 2007, Some problems with the method of fundamental solution using radial basis functions, Acta Mechanica Solida Sinica, 20, 21, 10.1007/s10338-007-0703-3
Platte, 2004, Computing eigenmodes of elliptic operators using radial basis functions, Comput Math Appl, 48, 561, 10.1016/j.camwa.2003.08.007
Hang, 2016, Computing eigenmodes of elliptic operators using increasingly flat radial basis functions, Eng Anal Bound Elem, 66, 12, 10.1016/j.enganabound.2016.01.014
Reutskiy, 2006, The method of fundamental solutions for Helmholtz eigenvalue problems in simply and multiply connected domains, Eng Anal Bound Elem, 30, 150, 10.1016/j.enganabound.2005.08.011
Kleefeld, 2018, The method of fundamental solutions for computing acoustic interior transmission eigenvalues, Inverse Probl, 34, 10.1088/1361-6420/aaa72d
Bogosel, 2016, The method of fundamental solutions applied to boundary eigenvalue problems, J Comput Appl Math, 306, 265, 10.1016/j.cam.2016.04.008
Türk, 2019, Chebyshev spectral collocation method approximations of the Stokes eigenvalue problem based on penalty techniques, Appl Numer Math, 145, 188, 10.1016/j.apnum.2019.06.005
Boyd, 2001
Çelik, 2005, Approximate computation of eigenvalues with Chebyshev collocation method, Appl Math Comput, 168, 125, 10.1016/j.amc.2004.08.024
Graef, 2014, A Chebyshev spectral method for solving Riemann–Liouville fractional boundary value problems, Appl Math Comput, 241, 140, 10.1016/j.amc.2014.05.012
Taiwo, 2012, Chebyshev methods for the numerical solution of fourth-order differential equations, Int J Phys Sci, 7, 2032, 10.5897/IJPS11.043
Wang, 2020, Chebyshev collocation technique for vibration analysis of sandwich cylindrical shells with metal foam core, Z Angew Math Mech, e201900199, 1
Zheng, 2016, A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals, J Comput Phys, 305, 997, 10.1016/j.jcp.2015.10.020
Chen, 2011, The method of approximate particular solutions for solving elliptic problems with variable coefficients, Int J Comp Meth-Sing, 8, 545, 10.1142/S0219876211002484
Livio, 2005
Grebenkov, 2013, Geometrical structure of Laplacian eigenfunctions, SIAM Rev, 55, 601, 10.1137/120880173
https://www.mathworks.com/company/newsletters/articles/the-lll-shaped-membrane.html