A memetic algorithm with support vector machine for feature selection and classification

Memetic Computing - Tập 7 Số 1 - Trang 59-73 - 2015
Messaouda Nekkaa1, Dalila Boughaci2
1LIMOSE Laboratory, Computer Science Department, Faculty of Sciences, University M’Hamed Bougara of Boumerdès, Boumerdès, Algeria
2LRIA/Computer Sciences Department, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bao Y, Hu Z, Xiong T (2013) A PSO and pattern search based memetic algorithm for SVMs parameters optimization. Neurocomputing 117:98–106

Bonilla Huerta EB, Duval B, Hao JK (2006) A hybrid GA/SVM approach for gene selection and classification of microarray data. In: Rothlanf et al (eds) EvoWorkshops 2006, LNCS 3907, pp 34–44

Boughaci D, Benhamou B, Drias H (2004) Solving Max-SAT problems using a memetic evolutionary metaheuristic. In: Proceedings of 2004 IEEE CIS 2004, pp 480–484

Boughaci D, Benhamou B, Drias H (2009) A memetic algorithm for the optimal winner determination problem. Soft Comput 13(8–9):905–917

Boughaci D, Benhamou B, Drias H (2010) Local search methods for the optimal winner determination problem in combinatorial auctions. J Math Model Algorithms 9(2):165–180

Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth, Belmont

Campbell C, Ying Y (2011) Learning with support vector machines. In: Synthesis lectures on artificial intelligence and machine learning. Morgan and Claypool Publishers, CA

Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines, 2001. http://www.csie.ntu.edu.tw/~cjlin/libsvm

Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines, 2001. http://www.csie.ntu.edu.tw/cjlin/papers/guide/data

Caponio A, Cascella GL, Neri F, Salvatore N, Sumner M (2007) A fast adaptive memetic algorithm for online and offline control design of PMSM drives. IEEE Trans Syst Man Cybern Part B 37(1):28–41

Caruana R, Freitag D (1994) Greedy attribute selection. In: Proceedings of the eleventh international conference on machine learning, ICML 1994. Morgan Kauffmann, New Brunswick, pp 28–36

Chen X, Ong Y, Lim M, Tan K (2011) A multi-facet survey on memetic computation. IEEE Trans Evol Comput 15(5):591–607

Frank E, Witten IH (1998) Generating accurate rule sets without global optimization. In: Shavlik J (ed) Proceedings of the fifteenth international conference machine learning (ICML 98)

Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Mach Learn 29:131–163

Gao XZ, Wang X, Zenger K (2015) A memetic-inspired harmony search method in optimal wind generator design. Int J Mach Learn Cyber 6(1):43–58

Hamel L (2009) Knowledge discovery with support vector machines. John Wiley and Sons Inc, Canada

Han J, Kamber M (2006) Data mining concepts and techniques, 2nd edn. Morgan Kaufmann, San Francisco

Hertz JA, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. Addison-Wesley Publishing Company Inc, Redwood City

John GH, Langley P (1995) Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the eleventh conference on uncertainty in artificial intelligence. Morgan Kaufman, San Mateo, pp 338–345

Kecman V (2001) Learning and soft computing: support vector machines. In: Neural networks, and fuzzy logic models. The MIT press, London

Kohavi R, John G (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324

Lessmann S, Stahlbock R, Crone SF (2006) Genetic algorithms for support vector machine model selection. In: Proceedings of the international joint conference on neural networks, IJCNN 2006, part of the IEEE World Congress on Computational Intelligence, WCCI 2006. IEEE, Vancouver, pp 3063–3069

Li Y, Tong Y, Bai B, Zhang Y (2007) An improved particle swarm optimization for SVM training. In: Third international conference on natural computation (ICNC 2007), pp 611–615

Morrison RW, De Jong KA (2002) Measurement of population diversity. In: Collet P, Fonlupt C, Hao JK, Lutton E, Schoenauer M (eds) Proceedings of AE 2001. Lecture Notes in Computer Science 2310 proceedings. Springer, pp 31–41

Moscato P (1989) On evolution search optimization genetic algorithms and martial arts: towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report, 826

Moscato P, Norman MG (1992) A memetic approach for the traveling salesman problem implementation of a computational ecology for combinatorial optimization on message-passing systems. In: Valero et al (eds) Parallel computing and transputer applications, pp 177–186

Nekkaa M, Boughaci D (2014) Stochastic local search versus genetic algorithm for feature selection. In: Proceedings of APMOD conference 2014: international conference on applied mathematical optimization and modelling 2014

Nekkaa M, Boughaci D (2012) Improving support vector machine using a stochastic local search for classification in dataMining. In: Proceedings of ICONIP 2012, Part II, LNCS 7664 proceedings, pp 168–176

Quinlan JR (1992) C4.5: programs for machine learning. Morgan Kaufmann, San Mateo

Rao R, Savsani V, Vakharia D (2012) Teaching learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183:1–15

Tan KC, Teoh EJ, Yua Q, Goh KC (2009) A hybrid evolutionary algorithm for attribute selection in data mining. Exp Syst Appl 36:8616–8630

Tang M, Yao X (2007) A memetic algorithm for VLSI floorplanning. IEEE Trans Syst Man Cybern Part B 37(1):62–69

Tang J, Lim MH, Ong YS (2007) Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput 11(9):873–888

Vapnik V (1998) Statistical learning theory. John Wiley and Sons, New York

Vapnik V (1995) The natural of statistical learning theory. Springer, New York

Waikato Environment for Knowledge Analysis (WEKA), Version 3.6. The University of Waikato, Hamilton, New Zealand [online]. Software available at http://www.cs.waikato.ac.nz/ml/weka/downloading.html . Accessed 29 Mar 2014

Zhou Z, Ong YS, Lim MH, Lee BS (2007) Memetic algorithm using multi-surrogates for computationally expensive optimization problems. Soft Comput 11(10):957–971