A mechanistic theory of hydrogen embrittlement of steels

Wiley - Tập 76 Số 8 - Trang 848-857 - 1972
R.A. Oriani1
1United States Steel Corporation, Research Center, Monroeville, Pennsylvania 15146

Tóm tắt

AbstractConsideration of the relation between the cohesive energy and the surface free energy leads to the inference that dissolved hydrogen reduces the maximum cohesive resistive force of which the iron lattice is capable. This forms the basis of a mechanistic model for the velocity of hydrogen‐induced crack propagation in steels. The crack grows when the local tensile elastic stress normal to the plane of the crack equals the local maximum cohesive force per unit area as reduced by the large concentration of hydrogen drawn there by the effect of elastic stress on the chemical potential of hydrogen. The velocity of the growth is given by the solution of the relevant transport equation for the accumulation of hydrogen. Although quantifiable in principle the theory remains implicit because of current ignorance of the needed functional relationships, but some qualitative predictions and insights are possible, as well as the specification of important experiments.

Từ khóa


Tài liệu tham khảo

Tetelman A. S., 1962, Trans, metallurg. Soc. AIME, 224, 775

10.5006/0010-9312-5.1.1

Zapffe C., 1941, Trans, metallurg. Soc. AIME, 145, 225

de Kazinsky F. J., 1954, J. Iron Steel Inst., 177, 85

10.1016/0001-6160(60)90103-6

10.1016/0001-6160(62)90048-2

10.1016/0001-6160(63)90166-4

A. S.Tetelman Proceedings of Conference Fundamental Aspects of Stress Corrosion Cracking Columbus 1967; published by Natl. Assn. Corrosion Engineers p.446(1969).

H. H.Johnson Proceedings of Conference Fundamental Aspects of Stress Corrosion Cracking Columbus 1967: published by Natl. Assn. Corrosion Engineers p.439(1969).

10.1038/169842a0

10.1080/14786435608238106

B. M. W.Trapnell Chemisorption Butterworths Scientific Publications London1955;H. H.Podgurski private communication of unpublished work.

Hancock G. G., 1966, Trans, metallurg. Soc. AIME, 236, 513

Frohmberg R. P., 1955, Trans. A.S.M., 47, 892

E. R.Slaughter E. E.Fletcher A. R.Elsea andG. K.Manning WADC Tech. Rept.56–83 April1956.

Yang Ling, 1959, Proceedings of Symposium, Physical Metallurgy of Stress Corrosion Cracking, Pittsburgh 1959, 29

10.1524/zpch.1966.49.3_5.271

O. D.Gonzalez given inR. A.Oriani Proceedings of Conference Fundamental Aspects of Stress Corrosion Cracking Columbus 1967; published by NaTl. Association of Corrosion Engineers p.32(1969).

Troiano A. R., 1960, Trans. Amer. Soc. Metals, 52, 54

Kolachev B. A., 1968, Physics Metals and Metall, 26, 198

Goodier J. N., 1968, Fracture: An Advanced Treatise

N. P.Louat submitted for publication.

Inglis C. E., 1913, Trans. Inst. Naval Arch., 55, 219

Gibala R., 1967, Trans, metallurg. Soc. AIME, 239, 1574

10.1088/0959-5309/59/2/305

C. Y.Li P. M.Talda andR. P.Wei unpublished research U.S. Steel laboratories.

Novak S. R., 1969, J. Mater., 4, 701

Steigerwald E. A., 1960, Trans, metallurg. Soc. AIME, 218, 832

Williams D. P., 1970, Met. Trans., 1, 63, 10.1007/BF02819243

10.1007/BF02643465

10.1007/BF02664224

John D.Landes Doctoral Dissertation Lehigh University1970.

S. J.HudakandR. P.Wei Lehigh University private communication.

10.1016/0036-9748(70)90144-4

10.1016/0036-9748(71)90255-9

Johnson H. H., 1958, Trans, metallurg. Soc. AIME, 212, 528

J. E.SrawleyandW. F.Brown jr. ASTM STP 381 Amer. Soc. for Testing and Materials p.133(1965).

10.1016/0013-7944(68)90018-0

H. L.DuneganandA. S.Tetelman Technical Bull. DRC‐106 Dunegan Research Corp. Livermore California.

Sherman D. H., 1968, Trans, metallurg. Soc. AIME, 242, 1775