A maximal entropy stochastic process for a timed automaton

Information and Computation - Tập 243 - Trang 50-74 - 2015
Nicolas Basset1,2
1LIGM, University Paris-Est Marne-la-Vallée and CNRS, France
2LIAFA, University Paris Diderot and CNRS, France

Tài liệu tham khảo

Algoet, 1988, A sandwich proof of the Shannon–McMillan–Breiman theorem, Ann. Probab., 16, 899, 10.1214/aop/1176991794 Alur, 1991, Model-checking for probabilistic real-time systems (extended abstract), vol. 510, 115 Alur, 1994, A theory of timed automata, Theor. Comput. Sci., 126, 183, 10.1016/0304-3975(94)90010-8 Asarin, 2012, Toward a timed theory of channel coding, vol. 7595, 27 Asarin, 2013, Spectral gap in timed automata, vol. 8053, 16 Asarin, 2012, Generating functions of timed languages, vol. 7464, 124 Asarin, 2009, Volume and entropy of regular timed languages: analytic approach, 13 Asarin, 2009, Volume and entropy of regular timed languages: discretization approach, vol. 5710, 69 Baier, 2007, Probabilistic and topological semantics for timed automata, vol. 4855, 179 Basset, 2013, A maximal entropy stochastic process for a timed automaton, vol. 7966, 61 Basset, 2013 Basset, 2014, Counting and generating permutations using timed languages, vol. 8392, 502 Nicolas Basset, Eugene Asarin, Thin and thick timed regular languages, in: Fahrenberg and Tripakis [24], pp. 113–128. Bernadsky, 2007, Symbolic analysis for gsmp models with one stateful clock, vol. 4416, 90 Bertrand, 2008, Quantitative model-checking of one-clock timed automata under probabilistic semantics, 55 Billingsley, 2012, Probability and Measure, vol. 939 Bouyer, 2012, Almost-sure model-checking of reactive timed automata, 138 Brin, 2002 Burckhardt, 2006, Bounded model checking of concurrent data types on relaxed memory models: a case study, vol. 4144, 489 Cover, 2006 Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis, Danny Bøgsted Poulsen, Jonas van Vliet, Zheng Wang, Statistical model checking for networks of priced timed automata, in: Fahrenberg and Tripakis [24], pp. 80–96. David, 2011, Time for statistical model checking of real-time systems, vol. 6806, 349 Denise, 2012, Coverage-biased random exploration of large models and application to testing, Int. J. Softw. Tools Technol. Transf., 14, 73, 10.1007/s10009-011-0190-1 2011, vol. 6919 Grosu, 2005, Monte Carlo model checking, vol. 3440, 271 Kempf, 2013, As soon as probable: optimal scheduling under stochastic uncertainty, vol. 7795, 385 Kolmogorov, 1956, On the Shannon theory of information transmission in the case of continuous signals, IRE Trans. Inf. Theory, 2, 102, 10.1109/TIT.1956.1056823 Krasnosel'skij, 1989 Lind, 1995 Lothaire, 2005, Applied Combinatorics on Words, 10.1017/CBO9781107341005 Marchal Oudinet, 2011, Uniform Monte-Carlo model checking, vol. 6603, 127 Parry, 1964, Intrinsic Markov chains, Trans. Am. Math. Soc., 55, 10.1090/S0002-9947-1964-0161372-1 Pinsker, 1964, Information and Information Stability of Random Variables and Processes Puri, 2000, Dynamical properties of timed automata, Discrete Event Dyn. Syst., 10, 87, 10.1023/A:1008387132377 Schaefer, 1999 Shannon, 1948, A mathematical theory of communication, Bell Syst. Tech. J., 27, 623, 10.1002/j.1538-7305.1948.tb00917.x Stanley, 2010, A survey of alternating permutations, vol. 531, 165