A mathematical model for temperature-reducing potential of urban greenspaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akbari H (2002) Shade trees reduce building energy use and CO2 emissions from power plants. Environ Pollut 116:S119–S126
Anjos M, Lopes A (2017) Urban heat island and park cool island intensities in the coastal city of Aracaju North-Eastern Brazil. Sustainability 9(8):1379. https://doi.org/10.3390/su9081379
Aram F, Solgi E, Holden G (2019) The role of green spaces in increasing social interactions in neighborhoods with periodic markets. Habitat Int 84:24–32
Armson D, Stringer P, Ennos AR (2012) The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forestry & Urban Greening 11(3):245–255
Beer AR, Delshammar T, Schildwacht P (2003) A changing understanding of the role of greenspace in high-density housing: A European perspective. Built Environment (1978-), 132–143
Berry R, Livesley SJ, Aye L (2013) Tree canopy shade impacts on solar irradiance received by building walls and their surface temperature. Build Environ 69:91–100
Bonafoni S, Chaiyapon K (2018) Land surface temperature and urban density: multiyear modeling and relationship analysis using MODIS and landsat data. Remote Sens 10(9):1471. https://doi.org/10.3390/rs10091471
Bowler DE, Buyung-Ali LM, Knight TM, Pullin AS (2010) A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health 10:456–456. https://doi.org/10.1186/1471-2458-10-456. PubMed
Budhiraja B et al (2019) Seasonality of surface urban heat island in Delhi city region measured by local climate zones and conventional indicators. IEEE J Sel Topics Appl Earth Observ Remote Sens 12(12):5223–5232. https://doi.org/10.1109/JSTARS.2019.2955133
Cao X, Onishi A, Chen J, Imura H (2010) Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landsc Urban Plann 96(4):224–231. https://doi.org/10.1016/j.landurbplan.2010.03.008
Chang C-R, Li M-H, Chang S-D (2007) A preliminary study on the local cool-island intensity of Taipei city parks. Landsc Urban Plann 80(4):386–395. https://doi.org/10.1016/j.landurbplan.2006.09.005
Chang C-T, Yang C-H, Lin T-P (2019) Carbon dioxide emissions evaluations and mitigations in the building and traffic sectors in Taichung metropolitan area, Taiwan. J Clean Prod 230:1241–1255
Cheela VS, John M, Biswas W, Sarker P (2021) Combating urban heat island effect—A review of reflective pavements and tree shading strategies. Buildings 11(3):93
Chen A, Yao XA, Sun R, Chen L (2014) Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban Forestry Urban Greening 13(4):646–654
Cheng X, Wei B, Chen G, Li J, Song C (2015) Influence of park size and its surrounding urban landscape patterns on the park cooling effect. J Urban Plan Dev 141(3):A4014002
Chen L et al (2022) Combined effects of artificial surface and urban blue-green space on land surface temperature in 28 major cities in China. Remote Sens 14(3):448. https://doi.org/10.3390/rs14030448
Chi-Ru C, Ming-Huang L, Shyh-Dean C (2007) A preliminary study on the local cool-island intensity of Taipei city parks. Landscape Urban Plan 80(4):386–395. https://doi.org/10.1016/j.landurbplan.2006.09.005
Correa Cantaloube EN, Ruiz MA, Canton MA, Lesino G (2012) Thermal comfort in forested urban canyons of low building density. An assessment for the city of Mendoza, Argentina
Dimoudi A, Nikolopoulou M (2003) Vegetation in the urban environment: microclimatic analysis and benefits. Energy Build 35(1):69–76
Doick KJ, Peace A, Hutchings TR (2014) The role of one large greenspace in mitigating London’s nocturnal urban heat island. Sci Total Environ 493:662–671. https://doi.org/10.1016/j.scitotenv.2014.06.048
Du H et al (2017) Quantifying the cool island effects of urban green spaces using remote sensing data. Urban Forestry & Urban Greening 27:24–31. https://doi.org/10.1016/j.ufug.2017.06.008
Estoque RC, Murayama Y, Myint SW (2017) Effects of landscape composition and pattern on land surface temperature: an urban heat island study in the megacities of Southeast Asia. Sci Total Environ 577:349–359
Feyisa GL, Dons K, Meilby H (2014) Efficiency of parks in mitigating urban heat island effect: an example from Addis Ababa. Landsc Urban Plann 123:87–95
Fuladlu K, Riza M, İlkan M (2018) The effect of rapid urbanization on the physical modification of urban area
Gago EJ, Roldan J, Pacheco-Torres R, Ordóñez J (2013) The city and urban heat islands: a review of strategies to mitigate adverse effects. Renew Sustain Energy Rev 25:749–758
García-García MJ, Christien L, García-Escalona E, González-García C (2020) Sensitivity of green spaces to the process of urban planning. Three case studies of Madrid (Spain). Cities 100:102655
Gelan E (2021) GIS-based multi‐criteria analysis for sustainable urban green spaces planning in emerging towns of Ethiopia: the case of Sululta town. Environ Syst Res 10(1):13. https://doi.org/10.1186/s40068-021-00220-w
Georgi JN, Dimitriou D (2010) The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Build Environ 45(6):1401–1414
Gherraz H, Guechi I, Alkama D (2020) Quantifying the effects of spatial patterns of green spaces on urban climate and urban heat island in a semi-arid climate. Bulletin de La Société Royale Des Sciences de Liège
Gill SE, Handley JF, Ennos AR, Pauleit S (2007) Adapting cities for Climate Change: the role of the Green infrastructure. Built Environ 33(1):115–133. https://doi.org/10.2148/benv.33.1.115
Giridharan R, Lau SSY, Ganesan S, Givoni B (2008) Lowering the outdoor temperature in high-rise high-density residential developments of coastal Hong Kong: the vegetation influence. Build Environ 43(10):1583–1595
Grilo F, Pinho P, Aleixo C, Catita C, Silva P, Lopes N, Freitas C, Santos-Reis M, McPhearson T, Branquinho C (2020) Using green to cool the grey: modelling the cooling effect of green spaces with a high spatial resolution. Sci Total Environ 724. https://doi.org/10.1016/j.scitotenv.2020.138182
Guha S et al (2020) An investigation on seasonal variability between LST and NDWI in an urban environment using Landsat satellite data. Geomatics Nat Hazards Risk 11(1):1319–1345. https://doi.org/10.1080/19475705.2020.1789762
Guha S, Govil H (2022) Seasonal variability of LST-NDVI correlation on different land use/land cover using Landsat satellite sensor: a case study of Raipur City, India. Environ Develop Sustain 24(6):8823–8839. https://doi.org/10.1007/s10668-021-01811-4
Gupta K, Kumar P, Pathan SK, Sharma KP (2012) Urban Neighborhood Green Index–A measure of green spaces in urban areas. Landsc Urban Plann 105(3):325–335
Haase D (2021) Integrating Ecosystem Services, Green Infrastructure and Nature-Based Solutions—New Perspectives in Sustainable Urban Land Management: Combining Knowledge About Urban Nature for Action. Sustainable Land Management in a European Context: A Co-Design Approach, 305–318
Hailemariam B (2021) Suitable site selection for urban green space development using geographic information system and remote sensing based on multi criterion analysis. Int J Human Capital Urban Manage 6(1):97–110
Hamada S, Ohta T (2010) Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban Forestry & Urban Greening 9(1):15–24
He B-J (2018) Potentials of meteorological characteristics and synoptic conditions to mitigate urban heat island effects. Urban Clim 24:26–33
Heidt V, Neef M (2008) Benefits of urban green space for improving urban climate. Ecology, planning, and management of urban forests. Springer, pp 84–96
Herrera-Gomez SS, Quevedo-Nolasco A, Pérez-Urrestarazu L (2017) The role of green roofs in climate change mitigation. A case study in Seville (Spain). Build Environ 123:575–584
Hyde KL (2022) Assessing urban heat island mitigation capacities of green infrastructure to address heat vulnerability inequities in San Francisco, California
Jaganmohan M, Knapp S, Buchmann CM, Schwarz N (2016) The bigger, the better? The influence of urban green space design on cooling effects for residential areas. J Environ Qual 45(1):134–145
Jonsson P (2004) Vegetation as an urban climate control in the subtropical city of Gaborone, Botswana. Int J Climatol 24(10):1307–1322. https://doi.org/10.1002/joc.1064
Jáuregui E (1990) Influence of a large urban park on temperature and convective precipitation in a tropical city. Energy Build 15(3–4):457–463
Kafy A et al (2021) Assessing and predicting land use/land cover land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area. Environ Challenges 4:100192. https://doi.org/10.1016/j.envc.2021.100192
Kleerekoper L, Van Esch M, Salcedo TB (2012) How to make a city climate-proof, addressing the urban heat island effect. Resour Conserv Recycl 64:30–38
Kong F, Yin H, James P, Hutyra LR, He HS (2014a) Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landsc Urban Plann 128:35–47
Kong F, Yin H, Wang C, Cavan G, James P (2014b) A satellite image-based analysis of factors contributing to the green-space cool island intensity on a city scale. Urban Forestry & Urban Greening 13(4):846–853
Kruize H, van der Vliet N, Staatsen B, Bell R, Chiabai A, Muiños G, Higgins S, Quiroga S, Martinez-Juarez P, Yngwe A, M (2019) Urban green space: creating a triple win for environmental sustainability, health, and health equity through behavior change. Int J Environ Res Public Health 16(22):4403
Kumar S et al (2019) Monitoring and prediction of land use land cover changes and its impact on land surface temperature in the central part of Hisar district Haryana under semi-arid zone of India. J Landscape Ecol 12(3);117–140. https://doi.org/10.2478/jlecol-2019-0020
Lin B-S, Lin C-T (2016) Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban Forestry Urban Greening 20:348–357. https://doi.org/10.1016/j.ufug.2016.10.003
Lyles-Chockley A (2008) Building livable places: the importance of Landscape in Urban Land Use, Planning, and Development. Buff Envtl LJ 16:95
Malys L, Musy M, Inard C (2014) A hydrothermal model to assess the impact of green walls on urban microclimate and building energy consumption. Build Environ 73:187–197
Marković M et al (2021) Monitoring of spatiotemporal change of green spaces in relation to the land surface temperature: a case study of Belgrade, Serbia. Remote Sens 13(19):3846.https://doi.org/10.3390/rs13193846
Menglin S et al (2022) Spatiotemporal pattern and long-term trend of global surface urban heat islands characterized by dynamic urban-extent method and MODIS data. ISPRS J Photogrammetry Remote Sens 183:321–335. https://doi.org/10.1016/j.isprsjprs.2021.11.017
Mensah CA (2014) Urban green spaces in Africa: Nature and challenges
Middel A, Chhetri N, Quay R (2015) Urban forestry and cool roofs: assessment of heat mitigation strategies in Phoenix residential neighbourhoods. Urban Forestry Urban Greening 14(1):178–186
Narita K, Mikami T, Sugawara H, Honjo T, Kimura K, Kuwata N (2004) Cool-island and Cold Air-seeping Phenomena in an Urban Park, Shinjuku Gyoen, Tokyo. Geographical Rev Japan 77(6):403–4201. https://doi.org/10.4157/grj.77.403
Newton NT (1971) Design on the land: the development of landscape architecture. La Editorial, UPR
Ng E, Chen L, Wang Y, Yuan C (2012) A study on the cooling effects of greening in a high-density city: an experience from Hong Kong. Build Environ 47:256–271. https://doi.org/10.1016/j.buildenv.2011.07.014
Nowak DJ, Crane DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening 4(3–4):115–123
Oliveira S, Andrade H, Vaz T (2011) The cooling effect of green spaces as a contribution to the mitigation of urban heat: a case study in Lisbon. Build Environ 46(11):2186–2194
Osmond P, Sharifi E (2017) Guide to urban cooling strategies. Low Carbon Living CRC.
Pandey P, Kumar D, Prakash A, Masih J, Singh M, Kumar S, Jain VK, Kumar K (2012) A study of urban heat island and its association with particulate matter during winter months over Delhi. Sci Total Environ 414:494–507. https://doi.org/10.1016/j.scitotenv.2011.10.043
Park J, Kim J-H, Dvorak B, Lee DK (2018) The role of green roofs on microclimate mitigation effect to local climates in summer. Int J Environ Res 12:671–679
Peng J, Dan Y, Qiao R, Liu Y, Dong J, Wu J (2021) How to quantify the cooling effect of urban parks? Linking maximum and accumulation perspectives. Remote Sens Environ 252:112135
Potchter O, Cohen P, Bitan A (2006) Climatic behavior of various urban parks during hot and humid summer in the mediterranean city of Tel Aviv, Israel. Int J Climatol 26(12):1695–1711. https://doi.org/10.1002/joc.1330
Priyadarshini KN, Sivashankari V, Shekhar S, Balasubramani K (2021) Examining Land Surface temperature from Agglomerative Spectra using Hyperspectral dataset. Sustainable Climate Action and Water Management. Springer, pp 203–209
Ramaiah M, Avtar R (2019) Urban Green Spaces and their need in cities of rapidly urbanizing India: a review. Urban Sci 3(3):94. https://doi.org/10.3390/urbansci3030094
Ramaiah M et al (2020) Land cover influences on LST in two proposed smart cities of India: comparative analysis using spectral indices. Land 9(9):292. https://doi.org/10.3390/land9090292
Razzaghmanesh M, Beecham S, Salemi T (2016) The role of green roofs in mitigating Urban Heat Island effects in the metropolitan area of Adelaide, South Australia. Urban Forestry & Urban Greening 15:89–102
Roy S, Pandit S, Eva EA, Bagmar MSH, Papia M, Banik L, Dube T, Rahman F, Razi MA (2020) Examining the nexus between land surface temperature and urban growth in Chattogram Metropolitan Area of Bangladesh using long term landsat series data. Urban Clim 32:100593
Sangwan A, Kumar N, Kumar A (2023a) Amorphous nature of Green spaces in Indian Urban Planning. Int Rev Spat Plann Sustainable Dev 11(1):208–225
Sangwan A et al (2023b) Defining urban greenspaces in the Indian context. Architect Urban Plan 19(1):76–92. https://doi.org/10.2478/aup-2023-0008
Sangwan A, Saraswat A, Kumar N, Pipralia S, Kumar A (2022) Urban Green Spaces Prospects and Retrospect’s
Schwaab J, Meier R, Mussetti G, Seneviratne S, Bürgi C, Davin EL (2021) The role of urban trees in reducing land surface temperatures in European cities. Nat Commun 12(1):6763
Shao H, Kim G (2022) A Comprehensive Review of different types of Green Infrastructure to Mitigate Urban Heat islands: Progress, functions, and benefits. Land 11(10):1792
Simpson JR (1998) Urban forest impacts on regional cooling and heating energy use: Sacramento County case study. J Arboric 24:201–214
Simwanda M, Ranagalage M, Estoque RC, Murayama Y (2019) Spatial analysis of surface urban heat islands in four rapidly growing African cities. Remote Sens 11(14):1645
Souch CA, Souch C (1993) The effect of trees on summertime below canopy urban climates: a case study Bloomington, Indiana. J Arboriculture 19(5):303–312
Spangenberg J, Shinzato P, Johansson E, Duarte D (2008) Simulation of the influence of vegetation on microclimate and thermal comfort in the city of São Paulo. Revista Da Sociedade Brasileira De Arborização Urbana 3(2):1–19
Strohbach MW, Arnold E, Haase D (2012) The carbon footprint of urban green space—A life cycle approach. Landsc Urban Plann 104(2):220–229
Sun R, Chen L (2017) Effects of green space dynamics on urban heat islands: Mitigation and diversification. Ecosyst Serv 23:38–46
Traore M et al (2021) Assessment of land use/land cover changes and their impacts on land surface temperature in Bangui (the capital of Central African Republic). Environ Challenges 4:100114. https://doi.org/10.1016/j.envc.2021.100114
Tzoulas K, Korpela K, Venn S, Yli-Pelkonen V, Kaźmierczak A, Niemela J, James P (2007) Promoting ecosystem and human health in urban areas using Green infrastructure: a literature review. Landsc Urban Plann 81(3):167–178
Upmanis H, Eliasson I, Lindqvist S (1998) The influence of green areas on nocturnal temperatures in a high latitude city (Göteborg, Sweden). Int J Climatol 18(6):681–700. https://doi.org/10.1002/(sici)1097-0088(199805)18:6<681::aid-joc289>3.0.co;2-l
Vaz Monteiro M, Doick KJ, Handly P, Peace A (2016) The impact of greenspace size on the extent of local nocturnal air temperature cooling in London. Urban Forestry Urban Greening 16:160–169. https://doi.org/10.1016/j.ufug.2016.02.008
Wang C, Ren Z, Dong Y, Zhang P, Guo Y, Wang W, Bao G (2022a) Efficient cooling of cities at global scale using urban green space to mitigate urban heat island effects in different climatic regions. Urban Forestry & Urban Greening 74:127635
Wang L et al (2022b) Urban warming increases the temperature sensitivity of spring vegetation phenology at 292 cities across China. Sci Total Environ 834:155154. https://doi.org/10.1016/j.scitotenv.2022.155154
Wendel HEW, Downs JA, Mihelcic JR (2011) Assessing equitable access to urban green space: the role of engineered water infrastructure. Environ Sci Technol 45(16):6728–6734
Wong NH, Tan CL, Kolokotsa DD, Takebayashi H (2021) Greenery as a mitigation and adaptation strategy to urban heat. Nat Reviews Earth Environ 2(3):166–181
Wu C et al (2021) Estimating the cooling effect of pocket green space in high density urban areas in Shanghai, China. Front Environ Sci 9. https://doi.org/10.3389/fenvs.2021.657969
Yilmaz S et al (2022) Assessing the effects of different urban landscapes and built environment patterns on thermal comfort and air pollution in Erzurum city, Turkey. Building Environ 219:109210. https://doi.org/10.1016/j.buildenv.2022.109210
Yu Z, Guo X, Jørgensen G, Vejre H (2017) How can urban green spaces be planned for climate adaptation in subtropical cities? Ecol Ind 82:152–162
Zhang B, Gao J, Yang Y (2014) The cooling effect of urban green spaces as a contribution to energy-saving and emission-reduction: a case study in Beijing, China. Build Environ 76:37–43