A lower bound on the critical parameter of interlacement percolation in high dimension
Tóm tắt
We investigate the percolative properties of the vacant set left by random interlacements on
$${\mathbb{Z}^d}$$
, when d is large. A non-negative parameter u controls the density of random interlacements on
$${\mathbb{Z}^d}$$
. It is known from Sznitman (Ann Math, 2010), and Sidoravicius and Sznitman (Comm Pure Appl Math 62(6):831–858, 2009), that there is a non-degenerate critical value u
*, such that the vacant set at level u percolates when u < u
*, and does not percolate when u > u
*. Little is known about u
*, however, random interlacements on
$${\mathbb{Z}^d}$$
, for large d, ought to exhibit similarities to random interlacements on a (2d)-regular tree, where the corresponding critical parameter can be explicitly computed, see Teixeira (Electron J Probab 14:1604–1627, 2009). We show in this article that lim inf
d
u
*/ log d ≥ 1. This lower bound is in agreement with the above mentioned heuristics.
Tài liệu tham khảo
Alon N., Benjamini I., Stacey A.: Percolation on finite graphs and isoperimetric inequalities. Ann. Probab. 32(32A), 1727–1745 (2004)
Bollobás B., Kohayakawa Y.: Percolation in high dimension. Eur. J. Combinatorics 15, 113–125 (1994)
Bollobás B., Leader I.: Edge-isoperimetric inequalities in the grid. Combinatorica 11(4), 299–314 (1991)
Carne T.K.: A transmutation formula for Markov chains. Bull. Sci. Math. 109(4), 399–405 (1985)
Černý, J., Teixeira, A., Windisch, D.: Giant vacant component left by a random walk in a random d-regular graph. Preprint
Gordon D.M.: Percolation in high dimensions. J. Lond. Math. Soc. 44(2), 373–384 (1991)
Hara T., Slade G.: Mean-field critical phenomena for percolation in high dimensions. Commun. Math. Phys. 128, 33–391 (1990)
Kesten H.: Asymptotics in high dimensions for percolation. In: Grimmett, G., Welsch, D.J.A. (eds) Disorder in Pysical Systems: A Volume in Honour of John Hammersley, pp. 219–240. Clarendon Press, Oxford (1990)
Liggett T., Schonmann R.H., Stacey A.M.: Domination by product measures. Ann. Probab. 25(1), 71–95 (1997)
Madras N., Slade G.: The Self-Avoiding Walk. Birkhäuser, Basel (1993)
Montroll E.W.: Random walks in multidimensional spaces, especially on periodic lattices. J. Soc. Industr. Appl. Math. 4(4), 241–260 (1956)
Olver F.W.J.: Introduction to asymptotics and special functions. Academic Press, New York (1974)
Pisztora A.: Surface order large deviations for Ising, Potts and percolation models. Probab. Theory Relat. Fields 104, 427–466 (1996)
Sidoravicius V., Sznitman A.S.: Percolation for the vacant set of random interlacements. Comm. Pure Appl. Math. 62(6), 831–858 (2009)
Sznitman, A.S.: Vacant set of random interlacements and percolation. Ann. Math. (in press) also available at arXiv:0704.2560
Sznitman A.S.: Random walks on discrete cylinders and random interlacements. Probab. Theory Relat. Fields 145, 143–174 (2009)
Sznitman A.S.: Upper bound on the disconnection time of discrete cylinders and random interlacements. Ann. Probab. 37(5), 1715–1746 (2009)
Sznitman A.S.: On the domination of random walk on a discrete cylinder by random interlacements. Electron. J. Probab. 14, 1670–1704 (2009)
Sznitman, A.S.: On the critical parameter of interlacement percolation in high dimension (Preprint)
Teixeira A.: Interlacement percolation on transient weighted graphs. Electron. J. Probab. 14, 1604–1627 (2009)
Windisch D.: Random walk on a discrete torus and random interlacements. Electr. Commun. Probab. 13, 140–150 (2008)
Windisch, D.: Random walks on discrete cylinders with large bases and random interlacements. Ann. Probab. (in press). Available at arXiv:0907.1627