A low-mismatched instrumentation amplifier for ECG front-end readout circuit

Ding-Lan Shen1, Yung-Yi Hsu2
1Fu Jen Catholic University
2Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Waller, A. D. (1887). A demonstration on man of electromotive changes accompanying the heart’s beat. Journal of Physiology, 8(5), 229–234.

Agarwala, R., Wang, P., Bishop, H. L., Dissanayak, A., & Calhoun, B. H. (2021). A 0.6V 785-nW multimodal sensor interface IC for ozone pollutant sensing and correlated cardiovascular disease monitoring. IEEE Journal of Solid-State Circuits, 36(4), 1058–1070.

Deepu, C. J., Xu, X. Y., Wong, D. L. T., Heng, C. H., & Lian, Y. (2018). A 2.3 $$\mu $$W ECG-on-chip for wireless wearable sensors. IEEE Transactions on Circuits and Systems-Part II: Express Briefs, 65(10), 1385–1389.

Zhang, X., Zhang, Z., Li, Y., Liu, C., Guo, Y. X., & Lian, Y. (2016). A 2.89 $$\mu $$W dry-electrode enabled clockless wireless ECG soc for wearable applications. IEEE Journal of Solid-State Circuits, 51(10), 2287–2297.

Bai, W., Zhu, Z., Li, Y., & Liu, L. (2018). A 64.8 $$\mu $$W $$>$$ 2.2 G$$\Omega $$ dc-ac configurable CMOS front-end IC for wearable ECG monitoring. IEEE Sensors Journal, 18(8), 3400–3409.

Mondal, S., & Hall, D. A. (2020). A 13.9-nA ECG amplifier achieving 0.86/0.99 nef/pef using ac-coupled ota-stackingg. IEEE Journal of Solid-State Circuits, 55(2), 414–425.

Mohan, R., Zaliasl, S., Gielen1, G., van Hoof, C., Helleputte, N.V., Yazicioglu, R. F. (2016). A 0.6V 0.015mm$$^2$$ time-based biomedical readout for ambulatory applications in 40nm CMOS. In Proceedings of IEEE International Solid-State Circuits Conference, pp. 482–483.

Harpe, P., Gao, H., van Dommele, R., Cantatore, E., van Roermund, A. (2015). A 3nW signal-acquisition IC integrating an amplifier with 2.1 NEF and a 1.5fJ/conv-step ADC. In Proceedings of IEEE International Solid-State Circuits Conference, pp. 382–383.

van Helleputte, N., Konijnenburg, M., Kim, H., Pettine, J., Jee, D.-W., Breeschoten, A., Morgado, A., Torfs, T., de Groot, H., van Hoof, C., Yazicioglu, R. F. (2014) A multi-parameter signal-acquisition SoC for connected personal health applications. In Proceedings of IEEE International Solid-State Circuits Conference, pp. 314–315.

Yazicioglu, R. F., Kim, S., Torfs, T., Kim, H., & van Hoof, C. (2011). A 30 $$\mu $$W analog signal processor asic for portable biopotential signal monitoring. IEEE Journal of Solid-State Circuits, 46(1), 209–223.

Koli, K., & Halonen, K. A. I. (2000). CMRR enhancement techniques for current-mode instrumentation amplifiers. IEEE Transactions on Circuits and Systems-Part I: Fundamental Theory and Applications, 47(5), 622–632.

Ghallab, Y. H., Badawym, W., Kaler, K. V. I. S., & Maund, B. J. (2005). A novel current-mode instrumentation amplifier base on operational floating current conveyor. IEEE Transactions on Instrumentation and Measurement, 54(5), 1941–1949.

Sedra, A., & Smith, K. C. (1970). A second-generation current conveyor and its applications. IEEE Transactions on Circuit Theory, 1, 132–134.

Ferri, G., Marcellis, A. D., Carlo, C. D., Stornelli, V., Flammini, A., Depari, A., et al. (2009). A ccii-based low-voltage low-power read-out circuit for dc-excited resistive gas sensors. IEEE Sensors Journal, 9(12), 2035–2041.

ToumAazou, C., & Lidgey, F. J. (1989). Noveal current-mode instrumentation amplifier. Electronics Letters 2nd, 25(3), 228–230.

Intersil: Instrumentation Amplifier Application Note. (2009). Intersil

Razavi, B. (2017). Design of analog CMOS integrated circuits (2nd ed.). New York: McGRAW-HILL.

Kurashina, T., Ogawa, S., Watanabe, K. (1998). A high performance class AB current conveyor. In 1998 IEEE international conference on electronics, circuits and systems. Surfing the Waves of Science and Technology (Cat. No.98EX196), pp. 143–146.

Schaumann, R., Valkenburg, M.E.V. (2001) Design of analog filters. Oxford, New York.