A locally induced homoclinic motion of a vortex filament
Tóm tắt
An exact homoclinic solution of the Da Rios–Betchov equation is derived using the Hirota bilinear equation. This solution describes unsteady motions of a linearly unstable helical or wound closed filament under the localized induction approximation.
Tài liệu tham khảo
Akhmedieva N.N., Eleonskii V.M., Kulagin N.E.: Generation of periodic trains of picosecond pulses in an optical fiber: exact results. Sov. Phys. JETP 62, 894–899 (1985)
Ablowitz M.J., Herbst B.M.: On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation. SIAM J. Appl. Math. 50, 339–351 (1990)
Ricca R.L.: The contributioons of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics. Fluid Dyn. Res 18, 245–268 (1996)
Hasimoto H.: A soliton on a vortex filament. J. Fluid Mech. 51, 477–485 (1972)
Hirota R.: Bilinearlization of soliton equations. J. Phys Soc. Jpn. 51, 323–331 (1982)
Fukumoto Y., Miyazaki T.: N-solitons on a curved vortex filament. J. Phys. Soc. Jpn. 55, 4152–4155 (1986)
Umeki M.: Complexification of wave numbers in solitons. Phys. Lett. A 236, 69–72 (1997)
Stahlhofen A.A., Druxes H.: Comment on Complexification of wave numbers in solitons by M. Umeki. Phys. Lett. A 253, 247–248 (1999)
Kida S.: A vortex filament moving without change of form. J. Fluid Mech. 112, 397–409 (1981)
Ricca R.L.: Torus knots and polynomial invariants for a class of soliton equations. Chaos 3, 83–91 (1993)
Ricca R.L.: Erratum: Torus knots and polynomial invariants for a class of soliton equations. Chaos 3, 83–91 (1993)
Ricca R.L.: Erratum: Torus knots and polynomial invariants for a class of soliton equations. Chaos 5, 346 (1995)