A locally induced homoclinic motion of a vortex filament

Theoretical and Computational Fluid Dynamics - Tập 24 - Trang 383-387 - 2009
Makoto Umeki1
1Department of Physics, University of Tokyo, Tokyo, Japan

Tóm tắt

An exact homoclinic solution of the Da Rios–Betchov equation is derived using the Hirota bilinear equation. This solution describes unsteady motions of a linearly unstable helical or wound closed filament under the localized induction approximation.

Tài liệu tham khảo

Akhmedieva N.N., Eleonskii V.M., Kulagin N.E.: Generation of periodic trains of picosecond pulses in an optical fiber: exact results. Sov. Phys. JETP 62, 894–899 (1985) Ablowitz M.J., Herbst B.M.: On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation. SIAM J. Appl. Math. 50, 339–351 (1990) Ricca R.L.: The contributioons of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics. Fluid Dyn. Res 18, 245–268 (1996) Hasimoto H.: A soliton on a vortex filament. J. Fluid Mech. 51, 477–485 (1972) Hirota R.: Bilinearlization of soliton equations. J. Phys Soc. Jpn. 51, 323–331 (1982) Fukumoto Y., Miyazaki T.: N-solitons on a curved vortex filament. J. Phys. Soc. Jpn. 55, 4152–4155 (1986) Umeki M.: Complexification of wave numbers in solitons. Phys. Lett. A 236, 69–72 (1997) Stahlhofen A.A., Druxes H.: Comment on Complexification of wave numbers in solitons by M. Umeki. Phys. Lett. A 253, 247–248 (1999) Kida S.: A vortex filament moving without change of form. J. Fluid Mech. 112, 397–409 (1981) Ricca R.L.: Torus knots and polynomial invariants for a class of soliton equations. Chaos 3, 83–91 (1993) Ricca R.L.: Erratum: Torus knots and polynomial invariants for a class of soliton equations. Chaos 3, 83–91 (1993) Ricca R.L.: Erratum: Torus knots and polynomial invariants for a class of soliton equations. Chaos 5, 346 (1995)