A locally convergent rotationally invariant particle swarm optimization algorithm
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bonyadi, M. R., Li, X., & Michalewicz, Z. (2013). A hybrid particle swarm with velocity mutation for constraint optimization problems. In Genetic and evolutionary computation conference (pp. 1–8). New York; ACM. doi: 10.1145/2463372.2463378 .
Bonyadi, M. R., & Michalewicz, Z. (2014). SPSO2011—analysis of stability, local convergence, and rotation sensitivity. In Genetic and evolutionary computation conference (pp. 9–15). Vancouver, Canada. ACM. doi: 10.1145/2576768.2598263 .
Bonyadi, M. R., Michalewicz, Z., & Li, X. (2014). An analysis of the velocity updating rule of the particle swarm optimization algorithm. Journal of Heuristics. doi: 10.1007/s10732-014-9245-2 .
Chen, D. B., & Zhao, C. X. (2009). Particle swarm optimization with adaptive population size and its application. Applied Soft Computing, 9(1), 39–48. doi: 10.1016/j.asoc.2008.03.001 .
Cheng, M.-Y., Huang, K.-Y., & Chen, H.-M. (2011). Dynamic guiding particle swarm optimization with embedded chaotic search for solving multidimensional problems. Optimization Letters, 6(6), 719–729. doi: 10.1007/s11590-011-0297-z .
Clerc, M., & Kennedy, J. (2002). The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73. doi: 10.1109/4235.985692 .
Deb, K., Joshi, D., & Anand, A. (2002). Real-coded evolutionary algorithms with parent-centric recombination. In Congress on evolutionary computation (pp. 61–66). Honolulu: IEEE. doi: 10.1109/CEC.2002.1006210 .
Engelbrecht, A. (2005). Fundamentals of computational swarm intelligence. Hoboken, NJ: Wiley.
Engelbrecht, A. (2011). Scalability of a heterogeneous particle swarm optimizer. In Symposium on swarm intelligence (pp. 1–8). Paris: IEEE. doi: 10.1109/SIS.2011.5952563 .
Engelbrecht, A. (2012). Particle swarm optimization: Velocity initialization. In Congress on evolutionary computation (pp. 1–8). Brisbane: IEEE.
García-Nieto, J., & Alba, E. (2011). Restart particle swarm optimization with velocity modulation: A scalability test. Soft Computing, 15(13), 2221–2232. doi: 10.1007/s00500-010-0648-1 .
Ghosh, S., Das, S., Kundu, D., Suresh, K., Panigrahi, B. K., & Cui, Z. (2010). An inertia-adaptive particle swarm system with particle mobility factor for improved global optimization. Neural Computing and Applications, 21(4), 237–250. doi: 10.1007/s00521-010-0356-x .
Hansen, N., Ros, R., Mauny, N., Schoenauer, M., & Auger, A. (2011). Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems. Applied Soft Computing, 11(10), 5755–5769. doi: 10.1016/j.asoc.2011.03.001 .
Hao, G., & Wenbo, X. (2011). A new particle swarm algorithm and its globally convergent modifications. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41(7), 1334–1351. doi: 10.1109/tsmcb.2011.2144582 .
Helwig, S., & Wanka, R. (2007). Particle swarm optimization in high-dimensional bounded search spaces. In Swarm intelligence symposium (pp. 198–205). Honolulu: IEEE. doi: 10.1109/SIS.2007.368046 .
Helwig, S., & Wanka, R. (2008). Theoretical analysis of initial particle swarm behavior. In International conference on parallel problem solving from nature (pp. 889–898). Berlin: Springer. doi: 10.1007/978-3-540-87700-4_88 .
Hsieh, S. T., Sun, T. Y., Liu, C. C., & Tsai, S. J. (2009). Efficient population utilization strategy for particle swarm optimizer. IEEE Transactions on Systems Man and Cybernetics Part B: Cybernetics, 39(4), 444–456. doi: 10.1109/Tsmcb.2008.2006628 .
Huang, H., Qin, H., Hao, Z., & Lim, A. (2010). Example-based learning particle swarm optimization for continuous optimization. Information Sciences. doi: 10.1016/j.ins.2010.10.018 .
Hutter, F., Hoos, H. H., Leyton-Brown, K., & Murphy, K. (2010). Time-bounded sequential parameter optimization. In Learning and intelligent optimization (pp. 281–298). Berlin: Springer.
Jiang, M., Luo, Y., & Yang, S. (2007a). Particle swarm optimization-stochastic trajectory analysis and parameter selection. Swarm intelligence focus on ant and particle swarm optimization. Wien: I-TECH Education and Publishing.
Jiang, M., Luo, Y. P., & Yang, S. Y. (2007b). Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information Processing Letters, 102(1), 8–16. doi: 10.1016/j.ipl.2006.10.005 .
Kennedy, J. (2003). Bare bones particle swarms. In Swarm intelligence symposium (pp. 80–87). doi: 10.1109/SIS.2003.1202251 .
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In International conference on neural networks (Vol. 4, pp. 1942–1948). Piscataway: IEEE.
Lehre, P. K., & Witt, C. (2013). Finite first hitting time versus stochastic convergence in particle swarm optimisation. In L. Di Gaspero, A. Schaerf, & T. Stützle (Eds.), Advances in metaheuristics. New York: Springer.
Li, X., & Yao, X. (2011). Cooperatively coevolving particle swarms for large scale optimization. IEEE Transactions on Evolutionary Computation, 16(4), 210–224.
Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10(5), 281–295. doi: 10.1109/Tevc.2005.857610 .
Malan, K., & Engelbrecht, A. P. (2008). Algorithm comparisons and the significance of population size. In IEEE World Congress on computational intelligence (pp. 914–920). Hong Kong: IEEE. doi: 10.1109/CEC.2008.4630905 .
Matyas, J. (1965). Random optimization. Automation and Remote Control, 26(4), 246–253.
Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm: Simpler, maybe better. IEEE Transactions on Evolutionary Computation, 8(5), 204–210. doi: 10.1109/TEVC.2004.826074 .
Montes de Oca, M. A., Aydın, D., & Stützle, T. (2011). An incremental particle swarm for large-scale continuous optimization problems: An example of tuning-in-the-loop (re) design of optimization algorithms. Soft Computing, 15(13), 2233–2255. doi: 10.1007/s00500-010-0649-0 .
Montes de Oca, M. A., & Stützle, T. (2008). Convergence behavior of the fully informed particle swarm optimization algorithm. In Genetic and evolutionary computation conference (pp. 71–78). New York: ACM. doi: 10.1145/1389095.1389106 .
Montes de Oca, M. A., Stützle, T., Birattari, M., & Dorigo, M. (2009). Frankenstein’s PSO: A composite particle swarm optimization algorithm. IEEE Transactions on Evolutionary Computation, 13(7), 1120–1132. doi: 10.1109/Tevc.2009.2021465 .
Poli, R. (2008). Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Application, 2008(5), 1–10. doi: 10.1155/2008/685175 .
Poli, R. (2009). Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Transactions on Evolutionary Computation, 13(6), 712–721. doi: 10.1109/Tevc.2008.2011744 .
Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization: An overview. Swarm Intelligence, 1(1), 33–57. doi: 10.1007/s11721-007-0002-0 .
Potter, M., & De Jong, K. (1994). A cooperative coevolutionary approach to function optimization. Parallel problem solving from nature (pp. 249–257). Berlin: Springer. doi: 10.1007/3-540-58484-6_269 .
Ratnaweera, A., Halgamuge, S. K., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 8(5), 240–255. doi: 10.1109/tvec.2004.826071 .
Rockafellar, R. T. (1996). Convex analysis (Vol. 28). Princeton: Princeton University Press.
Schmitt, M., & Wanka, R. (2013). Particle swarm optimization almost surely finds local optima. In Genetic and evolutionary computation conference, Amsterdam, The Netherlands (pp. 1629–1636). New York: ACM. doi: 10.1145/2463372.2463563 .
Shi, Y., & Eberhart, R. (1998a). A modified particle swarm optimizer. In World Congress on computational intelligence (pp. 69–73). Los Alamitos: IEEE. doi: 10.1109/icec.1998.699146 .
Shi, Y., & Eberhart, R. (1998b). Parameter selection in particle swarm optimization. In Evolutionary programming VII (pp. 591–600). Berlin: Springer. doi: 10.1007/BFb0040810 .
Solis, F. J., & Wets, R. J.-B. (1981). Minimization by random search techniques. Mathematics of Operations Research, 6(1), 19–30.
Spears, W. M., Green, D. T., & Spears, D. F. (2010). Biases in particle swarm optimization. International Journal of Swarm Intelligence Research, 1(4), 34–57. doi: 10.4018/jsir.2010040103 .
Spiegel, M. R. (1959). Theory and problems of vector analysis: Schaum’s outline series. New York: McGraw-Hill.
Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y., Auger, A., et al. (2005). Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Report 2005005, Technical Report.
Tang, K., Yao, X., Suganthan, P. N., MacNish, C., Chen, Y. P., Chen, C. M., et al. (2007). Benchmark functions for the CEC’2008 special session and competition on large scale global optimization. Nature Inspired Computation and Applications Laboratory, USTC, China, Technical Report.
Trelea, I. C. (2003). The particle swarm optimization algorithm: Convergence analysis and parameter selection. Information Processing Letters, 85(8), 317–325. doi: 10.1016/S0020-0190(02)00447-7 .
Tu, Z., & Lu, Y. (2004). A robust stochastic genetic algorithm (StGA) for global numerical optimization. IEEE Transactions on Evolutionary Computation, 8(7), 456–470. doi: 10.1109/TEVC.2004.831258 .
Van den Bergh, F., & Engelbrecht, A. (2002). A new locally convergent particle swarm optimiser. In Systems, man and cybernetics, Hammamet, Tunisia (Vol. 3, pp. 96–101): Los Alamitos: IEEE.
Van den Bergh, F., & Engelbrecht, A. P. (2001). Effects of swarm size on cooperative particle swarm optimisers. In Genetic and evolutionary computation conference, San Fransisco, USA.
Van den Bergh, F., & Engelbrecht, A. P. (2004). A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(5), 225–239. doi: 10.1109/TEVC.2004.826069 .
Van den Bergh, F., & Engelbrecht, A. P. (2006). A study of particle swarm optimization particle trajectories. Information Sciences, 176(10), 937–971. doi: 10.1016/j.ins.2005.02.003 .
Van den Bergh, F., & Engelbrecht, A. P. (2010). A convergence proof for the particle swarm optimiser. Fundamenta Informaticae, 105(6), 341–374. doi: 10.3233/FI-2010-370 .
Vesterstrom, J., & Thomsen, R. (2004). A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In Congress on evolutionary computation (Vol. 2, Vol. 1982, pp. 1980–1987): Los Alamitos: IEEE. doi: 10.1109/CEC.2004.1331139 .
Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., & Tian, Q. (2011). Self-adaptive learning based particle swarm optimization. Information Sciences, 181(20), 4515–4538. doi: 10.1016/j.ins.2010.07.013 .
Wilke, D. (2005). Analysis of the particle swarm optimization algorithm. Pretoria: University of Pretoria.
Wilke, D. N., Kok, S., & Groenwold, A. A. (2007a). Comparison of linear and classical velocity update rules in particle swarm optimization: Notes on diversity. International Journal for Numerical Methods in Engineering, 70(10), 962–984. doi: 10.1002/nme.1867 .
Wilke, D. N., Kok, S., & Groenwold, A. A. (2007b). Comparison of linear and classical velocity update rules in particle swarm optimization: Notes on scale and frame invariance. International Journal for Numerical Methods in Engineering, 70(10), 985–1008. doi: 10.1002/nme.1914 .
Witt, C. (2009). Why standard particle swarm optimisers elude a theoretical runtime analysis. In Foundations of genetic algorithms, New York, NY, USA (pp. 13–20). New York: ACM. doi: 10.1145/1527125.1527128 .
Xinchao, Z. (2010). A perturbed particle swarm algorithm for numerical optimization. Applied Soft Computing, 10(1), 119–124. doi: 10.1016/j.asoc.2009.06.010 .