A local lithospheric structure model for Vietnam derived from a high-resolution gravimetric geoid

Earth, Planets and Space - Tập 73 - Trang 1-22 - 2021
Dinh Toan Vu1,2, Sylvain Bonvalot1, Sean Bruinsma1,3, Luyen K. Bui2
1Géosciences Environnement Toulouse (GET), Université de Toulouse, CNRS, CNES, IRD, UT3, Toulouse, France
2Department of Geodesy, Hanoi University of Mining and Geology, Hanoi, Vietnam
3Centre National d’Etudes Spatiales (CNES), Toulouse, France

Tóm tắt

High-resolution Moho and lithosphere–asthenosphere boundary depth models for Vietnam and its surrounding areas are determined based on a recently released geoid model constructed from surface and satellite gravity data (GEOID_LSC_C model) and on 3ʹʹ resolution topography data (mixed SRTM model). A linear density gradient for the crust and a temperature-dependent density for the lithospheric mantle were used to determine the lithospheric structure under the assumption of local isostasy. In a first step, the impact of correcting elevation data from sedimentary basins to estimate Moho depth has been evaluated using CRUST1.0 model. Results obtained from a test area where seismic data are available, which demonstrated that the sedimentary effect should be considered before the inversion process. The geoid height and elevation-corrected sedimentary layer were filtered to remove signals originating below the lithosphere. The resulting Moho and lithosphere–asthenosphere boundary depth models computed at 1ʹ resolution were evaluated against seismic data as well as global and local lithospheric models available in the study region. These comparisons indicate a consistency of our Moho depth estimation with the seismic data within 1.5 km in standard deviation for the whole Vietnam. This new Moho depth model for the study region represents a significant improvement over the global models CRUST1.0 and GEMMA, which have standard deviations of 3.2 and 3.3 km, respectively, when compared to the seismic data. Even if a detailed geological interpretation of the results is out of scope of this paper, a joint analysis of the obtained models with the high-resolution Bouguer gravity anomaly is finally discussed in terms of the main geological patterns of the study region. The high resolution of our Moho and lithosphere–asthenosphere boundary depth models contribute to better constrain the lithospheric structure as well as tectonic and geodynamic processes of this region. The differences in Moho depth visible in the northeast and southwest sides of the Red River Fault Zone confirmed that the Red River Fault Zone may be considered the boundary between two continental blocks: South China and Indochina blocks. However, no remarkable differences in lithosphere–asthenosphere boundary depth were obtained from our results. This suggests that the Red River Fault Zone developed within the crust and remained a crustal fault.

Tài liệu tham khảo

Amante C, Eakins BW (2009) ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. Artemieva I (2011) The Lithosphere: An Interdisciplinary Approach. Cambridge University Press, Cambridge. https://www.cambridge.org/core/books/lithosphere/81407CA1D99768173A3EC0165D015715 Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim S-H, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geodesy 32(4):355–371. https://doi.org/10.1080/01490410903297766 Bonvalot S (2020) The international gravimetric bureau. The geodesist’s handbook 2020. J Geodesy 94(11):109. https://doi.org/10.1007/s00190-020-01434-z Bowin C (1983) Depth of principal mass anomalies contributing to the earth’s geoidal undulations and gravity anomalies. Mar Geodesy 7(1–4):61–100. https://doi.org/10.1080/15210608309379476 Braitenberg C, Ebbing J (2009) The GRACE-satellite gravity and geoid fields in analysing large-scale, cratonic or intracratonic basins. Geophys Prospect. https://doi.org/10.1111/J.1365-2478.2009.00793.X Braitenberg C, Wienecke S, Wang Y (2006) Basement structures from satellite-derived gravity field: South China Sea ridge. J Geophys Res Solid Earth. https://doi.org/10.1029/2005JB003938 Bruinsma SL, Förste C, Abrikosov O, Lemoine J-M, Marty J-C, Mulet S, Rio M-H, Bonvalot S (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophys Res Lett 41(21):7508–7514. https://doi.org/10.1002/2014GL062045 Bui CQ (1983) About the new results of the deep structural study of territory of Vietnam. J Earth Sci 5:27–40 Carlson RL, Raskin GS (1984) Density of the ocean crust. Nature 311(5986):555–558. https://doi.org/10.1038/311555a0 Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res Solid Earth 100(B6):9761–9788. https://doi.org/10.1029/95JB00259 Crough ST (1983) The correction for sediment loading on the seafloor. J Geophys Res Solid Earth 88(B8):6449–6454. https://doi.org/10.1029/JB088iB08p06449 Dang TH (2003) Study on some characteristics of deep crustal structure and seismotectonic zonation in northern Vietnam. PhD. dissertation, 150 pp. Institute of Geophysics, VAST. http://luanan.nlv.gov.vn/luanan?a=d&d=TTbFqWrDDFXG2003.1.1&e=vi-20--1--img-txIN. Accessed 4 April 2021. (In Vietnamese) Dinh VT (2010) Study of the earth crustal structures of Northern Vietnam by using the deep seismic, magnetotelluric investigations and gravity data (eds). Vietnam National Science Project: KC.08.06/06/10: Outcome Report-08/2010. https://123doc.net/document/1306470-nghien-cuu-cau-truc-sau-vo-qua-dat-mien-bac-viet-nam-bang-dia-chan-do-sau-va-tu-tellua-nham-nang-cao-do-tin-cay-cua-cac-du-bao-thien-tai-dia-chat.htm#. Accessed 4 April 2021. (In Vietnamese) Dinh VT, Harder S, Huang B-S, Trinh V-B, Doan V-T, Lai H-P, Tran A-V, Nguyen HQ-T, Nguyen V-D (2018) An overview of northern Vietnam deep crustal structures from integrated geophysical observations. Terr Atmos Ocean Sci. https://doi.org/10.3319/TAO.2018.01.02.01 Eaton DW, Darbyshire F, Evans RL, Grütter H, Jones AG, Yuan X (2009) The elusive lithosphere–asthenosphere boundary (LAB) beneath cratons. Lithos 109(1):1–22. https://doi.org/10.1016/j.lithos.2008.05.009 Ebbing J, Braitenberg C, Wienecke S (2007) Insights into the lithospheric structure and tectonic setting of the Barents Sea region from isostatic considerations. Geophys J Int 171(3):1390–1403. https://doi.org/10.1111/j.1365-246X.2007.03602.x Evans P, Crompton W (1946) Geological factors in gravity interpretation illustrated by evidence from India and Burma. Quart J Geol Soc 102(1–4):211–249. https://doi.org/10.1144/GSL.JGS.1946.102.01-04.13 Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys. https://doi.org/10.1029/2005RG000183 Faure M, Lepvrier C, Nguyen VV, Vu TV, Lin W, Chen Z (2014) The South China block-Indochina collision: where, when, and how? J Asian Earth Sci 79:260–274. https://doi.org/10.1016/j.jseaes.2013.09.022 Findlay RH (1997) The Song Ma Anticlinorium, northern Vietnam: the structure of an allochthonous terrane containing an early Palaeozoic island arc sequence. J Asian Earth Sci 15(6):453–464. https://doi.org/10.1016/S0743-9547(97)00031-7 Findlay RH, Trinh PT (1997) The Structural setting of the Song Ma Region, Vietnam and the Indochina-South China Plate Boundary Problem. Gondwana Res 1(1):11–33. https://doi.org/10.1016/S1342-937X(05)70003-4 Forsberg R, Tscherning C (2008) An overview manual for the GRAVSOFT geodetic gravity field modelling programs. DTU Space, Kongens Lyngby Fullea J, Fernàndez M, Zeyen H (2006) Lithospheric structure in the Atlantic-Mediterranean transition zone (southern Spain, northern Morocco): a simple approach from regional elevation and geoid data. CR Geosci 338(1):140–151. https://doi.org/10.1016/j.crte.2005.11.004 Fullea J, Fernàndez M, Zeyen H, Vergés J (2007) A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones. Tectonophysics 430(1):97–117. https://doi.org/10.1016/j.tecto.2006.11.003 Fullea J, Fernàndez M, Afonso JC, Vergés J, Zeyen H (2010) The structure and evolution of the lithosphere–asthenosphere boundary beneath the Atlantic-Mediterranean Transition Region. Lithos 120(1):74–95. https://doi.org/10.1016/j.lithos.2010.03.003 Gilley LD, Harrison TM, Leloup PH, Ryerson FJ, Lovera OM, Wang J-H (2003) Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam. J Geophys Res Solid Earth. https://doi.org/10.1029/2001JB001726 Globig J, Fernàndez M, Torne M, Vergés J, Robert A, Faccenna C (2016) New insights into the crust and lithospheric mantle structure of Africa from elevation, geoid, and thermal analysis. J Geophys Res Solid Earth 121(7):5389–5424. https://doi.org/10.1002/2016JB012972 Gómez-Ortiz D, Agarwal BNP (2005) 3DINVER.M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker–Oldenburg’s algorithm. Comput Geosci 31(4):513–520. https://doi.org/10.1016/j.cageo.2004.11.004 Helmcke D (1985) The Permo-Triassic »Paleotethys« in mainland Southeast-Asia and adjacent parts of China. Geol Rundsch 74(2):215–228. https://doi.org/10.1007/BF01824893 Hofmann-Wellenhof B, Moritz H (2006) Physical geodesy, 2nd edn. Springer, Wien Hong Nguyen P, Cong Bui Q, Dinh Nguyen X (2012) Investigation of earthquake tsunami sources, capable of affecting Vietnamese coast. Nat Hazards 64(1):311–327. https://doi.org/10.1007/s11069-012-0240-3 Huang B-S, Le TS, Liu C-C, Toan DV, Huang W-G, Wu Y-M, Chen Y-G, Chang W-Y (2009) Portable broadband seismic network in Vietnam for investigating tectonic deformation, the Earth’s interior, and early-warning systems for earthquakes and tsunamis. J Asian Earth Sci 36(1):110–118. https://doi.org/10.1016/j.jseaes.2009.02.012 Huchon P, Pichon XL, Rangin C (1994) Indochina Peninsula and the collision of India and Eurasia. Geology 22(1):27–30. https://doi.org/10.1130/0091-7613(1994)022%3c0027:IPATCO%3e2.3.CO;2 Hutchison CS (1989) The Palaeo-Tethyan Realm and Indosinian orogenic system of Southeast Asia. In: Şengör AMC (ed) Tectonic evolution of the Tethyan Region. Springer, Dordrecht, pp 585–643 Jiménez-Munt I, Fernàndez M, Saura E, Vergés J, Garcia-Castellanos D (2012) 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia-Eurasia collision (Iran). Geophys J Int 190(3):1311–1324. https://doi.org/10.1111/j.1365-246X.2012.05580.x Jolivet L, Davy P, Cobbold P (1990) Right-lateral shear along the Northwest Pacific Margin and the India-Eurasia Collision. Tectonics 9(6):1409–1419. https://doi.org/10.1029/TC009i006p01409 Jolivet L, Beyssac O, Goffé B, Avigad D, Lepvrier C, Maluski H, Thang TT (2001) Oligo-Miocene midcrustal subhorizontal shear zone in Indochina. Tectonics 20(1):46–57. https://doi.org/10.1029/2000TC900021 Kaban MK, Schwintzer P, Reigber Ch (2004) A new isostatic model of the lithosphere and gravity field. J Geodesy 78(6):368–385. https://doi.org/10.1007/s00190-004-0401-6 Kaban MK, El Khrepy S, Al-Arifi N (2016) Isostatic model and isostatic gravity anomalies of the Arabian plate and surroundings. Pure Appl Geophys 173(4):1211–1221. https://doi.org/10.1007/s00024-015-1164-0 Kumar N, Zeyen H, Singh AP (2014) 3D Lithosphere density structure of southern Indian shield from joint inversion of gravity, geoid and topography data. J Asian Earth Sci 89:98–107. https://doi.org/10.1016/j.jseaes.2014.03.028 Laske G, Masters G, Ma Z, Pasyanos ME (2012) CRUST1.0: an updated global model of earth’s crust. Geophys Res Abstr 14:3743 Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST10—a 1-degree global model of Earth’s crust. Abstract EGU2013-2658 presented at 2013 Geophys Res Abstracts 15 15:2658 Leloup PH, Lacassin R, Tapponnier P, Schärer U, Zhong D, Liu X, Zhang L, Ji S, Trinh PT (1995) The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics 251(1):3–84. https://doi.org/10.1016/0040-1951(95)00070-4 Leloup PH, Arnaud N, Lacassin R, Kienast JR, Harrison TM, Trong TTP, Replumaz A, Tapponnier P (2001) New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. J Geophys Res Solid Earth 106(B4):6683–6732. https://doi.org/10.1029/2000JB900322 Leloup PH, Tapponnier P, Lacassin R, Searle MP (2007) Discussion on the role of the Red River shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia Journal, Vol. 163, 2006, 1025–1036. J Geol Soc 164(6):1253–1260. https://doi.org/https://doi.org/10.1144/0016-76492007-065 Lemoine F, Kenyon S, Factor JK (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA Lepvrier C, Maluski H, Van Vuong N, Roques D, Axente V, Rangin C (1997) Indosinian NW-trending shear zones within the Truong Son belt (Vietnam) 40Ar-39Ar Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics 283(1):105–127. https://doi.org/10.1016/S0040-1951(97)00151-0 Lepvrier C, Maluski H, Van Tich V, Leyreloup A, Truong Thi P, Van Vuong N (2004) The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics 393(1):87–118. https://doi.org/10.1016/j.tecto.2004.07.030 Lepvrier C, Faure M, Van VN, Vu TV, Lin W, Trong TT, Hoa PT (2011) North-directed Triassic nappes in Northeastern Vietnam (East Bac Bo). J Asian Earth Sci 41(1):56–68. https://doi.org/10.1016/j.jseaes.2011.01.002 Li Y, Wu Q, Zhang R, Tian X, Zeng R (2008) The crust and upper mantle structure beneath Yunnan from joint inversion of receiver functions and Rayleigh wave dispersion data. Phys Earth Planet Inter 170(1):134–146. https://doi.org/10.1016/j.pepi.2008.08.006 Mazur S, Green C, Stewart MG, Whittaker JM, Williams S, Bouatmani R (2012) Displacement along the Red River Fault constrained by extension estimates and plate reconstructions. Tectonics. https://doi.org/10.1029/2012TC003174 Metcalfe I (2013) Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J Asian Earth Sci 66:1–33. https://doi.org/10.1016/j.jseaes.2012.12.020 Molnar P, Tapponnier P (1975) Cenozoic tectonics of Asia: effects of a continental collision. Science 189(4201):419–426 Nguyen, DX (2005) Research and Forecasting Earthquakes and Ground Movements in Vietnam. Institute of Geophysics, Hanoi, Vietnam, 2005. http://www.vncold.vn/Modules/CMS/Upload/10/TuLieu/150817/DongDatvn.pdf. (In Vietnamese) Nguyen NT, Nguyen TTH (2013) Topography of the Moho and earth crust structure beneath the East Vietnam Sea from 3D inversion of gravity field data. Acta Geophys 61(2):357–384. https://doi.org/10.2478/s11600-012-0078-9 Nguyen V-D, Huang B-S, Le T-S, Dinh V-T, Zhu L, Wen K-L (2013) Constraints on the crustal structure of northern Vietnam based on analysis of teleseismic converted waves. Tectonophysics 601:87–97. https://doi.org/10.1016/j.tecto.2013.04.031 Nguyen NT, Phan TH, Bui VN, Nguyen TTH, Tran TL (2018) Moho depth of the northern Vietnam and Gulf of Tonkin from 3D inverse interpretation of gravity anomaly data. J Geophys Eng 15(4):1651–1662. https://doi.org/10.1088/1742-2140/aabf48 Noisagool S, Boonchaisuk S, Pornsopin P, Siripunvaraporn W (2014) Thailand’s crustal properties from tele-seismic receiver function studies. Tectonophysics 632:64–75. https://doi.org/10.1016/j.tecto.2014.06.014 Oldenburg DW (1974) The inversion and interpretation of gravity anomalies. GEOPHYSICS 39(4):526–536. https://doi.org/10.1190/1.1440444 Parsons B, Sclater JG (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J Geophys Res (1896–1977) 82(5):803–827. https://doi.org/10.1029/JB082i005p00803 Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res Solid Earth. https://doi.org/10.1029/2011JB008916 Reguzzoni M, Sampietro D (2015) GEMMA: an earth crustal model based on GOCE satellite data. Int J Appl Earth Obs Geoinf 35:31–43. https://doi.org/10.1016/j.jag.2014.04.002 Reguzzoni M, Rossi L, Baldoncini M, Callegari I, Poli P, Sampietro D, Strati V, Mantovani F, Andronico G, Antonelli V, Bellato M, Bernieri E, Brigatti A, Brugnera R, Budano A, Buscemi M, Bussino S, Caruso R, Chiesa D, Corti D, Corso FD, Ding XF, Dusini S, Fabbri A, Fiorentini G, Ford R, Formozov A, Galet G, Garfagnini A, Giammarchi M, Giaz A, Grassi M, Insolia A, Isocrate R, Lippi I, Longhitano F, Presti DL, Lombardi P, Malyshkin Y, Marini F, Mari SM, Martellini C, Meroni E, Mezzetto M, Miramonti L, Monforte S, Montuschi M, Nastasi M, Ortica F, Paoloni A, Parmeggiano S, Pedretti D, Pelliccia N, Pompilio R, Previtali E, Ranucci G, Re AC, Ricci B, Romani A, Saggese P, Salamanna G, Sawy FH, Settanta G, Sisti M, Sirignano C, Spinetti M, Stanco L, Verde G, Votano L (2019) GIGJ: a crustal gravity model of the Guangdong Province for predicting the Geoneutrino signal at the JUNO experiment. J Geophys Res Solid Earth 124(4):4231–4249. https://doi.org/10.1029/2018JB016681 Robert A, Jiménez-Munt I, Fernàndez M, Vergés J (2012) Crustal and lithospheric mantle structures in Central Asia derived from geoid, elevation and thermal analysis. J Nepal Geol Soc. https://www.researchgate.net/publication/236888150_Crustal_and_lithospheric_mantle_structures_in_Central_Asia_derived_from_geoid_elevation_and_thermal_analysis. Accessed 4 April 2021 Robert AMM, Fernàndez M, Jiménez-Munt I, Vergés J (2017) Lithospheric structure in Central Eurasia derived from elevation, geoid anomaly and thermal analysis. Geol Soc 427(1):271–293. https://doi.org/10.1144/SP427.10 Sandwell DT, Renkin ML (1988) Compensation of swells and plateaus in the north Pacific: no direct evidence for mantle convection. J Geophys Res Solid Earth 93(B4):2775–2783. https://doi.org/10.1029/JB093iB04p02775 Sandwell DT, Müller RD, Smith WHF, Garcia E, Francis R (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346(6205):65–67. https://doi.org/10.1126/science.1258213 Schaeffer AJ, Lebedev S (2013) Global shear speed structure of the upper mantle and transition zone. Geophys J Int 194(1):417–449. https://doi.org/10.1093/gji/ggt095 Searle MP (2006) Role of the Red River Shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia. J Geol Soc 163(6):1025–1036. https://doi.org/10.1144/0016-76492005-144 Sjöberg LE, Bagherbandi M (2017) Gravity inversion and integration: theory and applications in geodesy and geophysics. Springer International Publishing, Berlin Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277(5334):1956–1962. https://doi.org/10.1126/science.277.5334.1956 Su C-M, Wen S, Tang C-C, Yeh Y-L, Chen C-H (2018) The variation of crustal structure along the Song Ma Shear Zone, Northern Vietnam. Tectonophysics 734–735:119–129. https://doi.org/10.1016/j.tecto.2018.04.005 Tapponnier P, Peltzer G, Armijo R (1986) On the mechanics of the collision between India and Asia. Geol Soc 19(1):113–157. https://doi.org/10.1144/GSL.SP.1986.019.01.07 Tenzer R, Hamayun K (2010) Global map of the gravity anomaly corrected for complete effects of the topography, and of density contrasts of global ocean, ice, and sediments. Slovak Acad Sci Geophys Inst Contributions Geophys Geodesy 38/4(4):357–370 Tenzer R, Novák P, Vajda P, Gladkikh V, Hamayun, (2012) Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Comput Geosci 16(1):193–207. https://doi.org/10.1007/s10596-011-9264-0 Torne M, Fernàndez M, Vergés J, Ayala C, Salas MC, Jimenez-Munt I, Buffett GG, Díaz J (2015) Crust and mantle lithospheric structure of the Iberian Peninsula deduced from potential field modeling and thermal analysis. Tectonophysics 663:419–433. https://doi.org/10.1016/j.tecto.2015.06.003 Tran VH (2012) Study on earthquake ground motion prediction and its application to structural response of bridge in Vietnam. Waseda University, Tokyo Trần ĐT, Nguyễn TY, Dương CC, Vy QH, Zuchiewicz W, Nguyễn QC, Nguyễn VN (2013) Recent crustal movements of northern Vietnam from GPS data. J Geodyn 69:5–10. https://doi.org/10.1016/j.jog.2012.02.009 Vu DT (2020) Height system unification and estimation of the lithospheric structure beneath Vietnam through high-resolution gravity field and quasigeoid modeling. Université Toulouse III - Paul Sabatier, Toulouse Vu DT, Bruinsma S, Bonvalot S (2019) A high-resolution gravimetric quasigeoid model for Vietnam. Earth Planets Space 71(1):65. https://doi.org/10.1186/s40623-019-1045-3 Vu DT, Bruinsma S, Bonvalot S, Remy D, Vergos GS (2020) A quasigeoid-derived transformation model accounting for land subsidence in the Mekong Delta towards height system unification in Vietnam. Remote Sens 12(5):817. https://doi.org/10.3390/rs12050817 Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys Union 79(47):579–579. https://doi.org/10.1029/98EO00426 Wienecke S (2006) A new analytical solution for the calculation of flexural rigidity: significance and application. http://dx.doi.org/https://doi.org/10.17169/refubium-4365 Yu Y, Hung TD, Yang T, Xue M, Liu KH, Gao SS (2017) Lateral variations of crustal structure beneath the Indochina Peninsula. Tectonophysics 712–713:193–199. https://doi.org/10.1016/j.tecto.2017.05.023