A local-global stepsize control for multistep methods applied to semi-explicit index 1 differential-algebraic equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
E. Eich, C. Führer, J. Yen,On the error control for multistep methods applied to ODEs with invariants and DAEs in multibody dynamics, Mech. Struct. and Mach.,23(2) (1995), 159–179.
C.W. Gear, K.W. Tu,The effects of variable mesh size on the stability of multistep methods, SIAM J. Numer. Anal.11 (1974), 1025–1043.
C.W. Gear, D.S. Watanabe,Stability and convergence of variable order multistep methods, SIAM J. Numer. Anal.11 (1974), 1044–1058.
C.W. Gear, L.R. Petzold,ODE methods for the solution of differential/algebraic systems, SIAM J. Numer. Anal.21 (1984), 716–728.
E. Hairer, S.P. Nørsett, G. Wanner,Solving ordinary differential equations I: Nonstiff problems, Springer-Verlag, Berlin, 1987, 1993.
E. Hairer, Ch. Lubich, M. Roche,The numerical solution of differential-algebraic systems by Runge-Kutta methods, Lecture Note in Math. 1409, Springer-Verlag, Berlin, 1989.
E. Hairer, G. Wanner,Solving ordinary differential equations II: Stiff and differentialalgebraic problems, Springer-Verlag, Berlin, 1991.
K.R. Jackson, A. Kværnø, S.P. Nørsett,The use of Butcher series in the analysis of Newton-like iterations in Runge-Kutta formulas, Applied Numerical Mathematics,15 (1994), 341–356.
G.Yu. Kulikov,A method for the numerical solution of the autonomous Cauchy problem with an algebraic restriction of the phase variables, (in Russian) Vestn. MGU Ser. 1 Mat. Mekh., (1992), No. 1, 14–19;translation in Moscow Univ. Math. Bull.47 (1992), No. 1, 14–18.
G.Yu. Kulikov,The numerical solution of an autonomous Cauchy problem with an algebraic constraint on the phase variables (the nonsingular case), (in Russian) Vestn. MGU Ser. 1 Mat. Mekh., (1993), No. 3, 6–10;translation in Moscow Univ. Math. Bull.48 (1993), No. 3, 8–12.
G.Yu. Kulikov,The numerical solution of the autonomous Cauchy problem with an algebraic relation between the phase variables, (in Russian) Zh. Vychisl. Mat. Mat. Fiz.33 (1993), No. 4, 522–540;translation in Comp. Maths Math. Phys.33 (1993), No. 4, 477–492.
G.Yu. Kulikov,The numerical solution of the Cauchy problem with algebraic constrains on the phase variables (with applications in medical cybernetics), Dissertation of Candidate of Sciences in Mathematics, Computing Center of Russian Academy of Sciences, Moscow, 1994.
G.Yu. Kulikov, P.G. Thomsen,Convergence and implementation of implicit RungeKutta methods for DAEs, Technical report 7/1996, IMM, Technical University of Denmark, Lyngby, 1996.
G.Yu. Kulikov,Convergence theorems for iterative Runge-Kutta methods with a constant integration step, (in Russian) Zh. Vychisl. Mat. Mat. Fiz.36 (1996), No. 8, 73–89;translation in Comp. Maths Math. Phys.36 (1996), No. 8, 1041–1054.
G.Yu. Kulikov,Numerical methods solving the semi-explicit differential-algebraic equations by implicit multistep fixed stepsize methods, Korean J. Comput. & Appl. Math.4 (1997), No. 2, 281–318.
G.Yu. Kulikov,Stable local-global stepsize control for Runge-Kutta methods, preprint numerics No. 3/1997, Mathematical Sciences Div., Norwegian University of Science and Technology, Trondheim, 1997.
G.Yu. Kulikov,Numerical solution of the Cauchy problem for a system of differentialalgebraic equations with the use of implicit Runge-Kutta methods with nontrivial predictor, (in Russian) Zh. Vychisl. Mat. Mat. Fiz.38 (1998), No. 1, 68–84;translation in Comp. Maths Math. Phys.38 (1998), No. 1, 64–80.
A. Kværnø,The order of Runge-Kutta methods applied to semi-explicit DAEs of index 1, using Newton-type iterations to compute the internal stage values, Technical report 2/1992, Mathematical Sciences Div., Norwegian Institute of Technology, Trondheim, 1992.