A local binary pattern based texture descriptors for classification of tea leaves
Tài liệu tham khảo
Wu, 2008, Application of image texture for the sorting of tea categories using multi-spectral imaging technique and support vector machine, J. Food Eng., 88, 474, 10.1016/j.jfoodeng.2008.03.005
Chen, 2007, Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM), Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 66, 568, 10.1016/j.saa.2006.03.038
Borah, 2007, Wavelet transform based image texture analysis for size estimation applied to the sorting of tea granules, J. Food Eng., 79, 629, 10.1016/j.jfoodeng.2006.02.022
Gill, 2013, Nondestructive grading of black tea based on physical parameters by texture analysis, Biosyst. Eng., 116, 198, 10.1016/j.biosystemseng.2013.08.002
Borah, 2003, Non-destructive testing of tea fermentation using image processing, insight-non-destructive testing and condition monitoring, J. Br. Inst. Nondestr. Test., 45, 55
Palacios-Morillo, 2013, Differentiation of tea varieties using UV–Vis spectra and pattern recognition techniques, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 103, 79, 10.1016/j.saa.2012.10.052
Laddi, 2013, Classification of tea grains based upon image texture feature analysis under different illumination conditions, J. Food Eng., 115, 226, 10.1016/j.jfoodeng.2012.10.018
Li, 2011, Using wavelet transform and multi-class least square support vector machine in multi-spectral imaging classification of Chinese famous tea, Expert Syst. Appl., 38, 11149, 10.1016/j.eswa.2011.02.160
Chen, 2008, Identification of tea varieties using computer vision, Trans. ASABE, 51, 623, 10.13031/2013.24363
Li, 2003, Texture classification using the support vector machines, Pattern Recognit., 36, 2883, 10.1016/S0031-3203(03)00219-X
Liu, 2014, Traffic sign recognition using group sparse coding, Inf. Sci., 266, 75, 10.1016/j.ins.2014.01.010
Ojala, 2002, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., 24, 971, 10.1109/TPAMI.2002.1017623
Yang, 2013, A comparative study on local binary pattern (LBP) based face recognition: LBP histogram versus LBP image, Neurocomputing, 120, 365, 10.1016/j.neucom.2012.10.032
Shih, 2004, Automatic extraction of head and face boundaries and facial features, Inf. Sci., 158, 117, 10.1016/j.ins.2003.03.002
Ahonen, 2006, Face description with local binary patterns: application to face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 28, 2037, 10.1109/TPAMI.2006.244
Nanni, 2007, RegionBoost learning for 2D+ 3D based face recognition, Pattern Recognit. Lett., 28, 2063, 10.1016/j.patrec.2007.06.003
Zhao, 2007, Dynamic texture recognition using local binary patterns with an application to facial expressions, IEEE Trans. Pattern Anal. Mach. Intell., 29, 915, 10.1109/TPAMI.2007.1110
O. Lahdenoja, M. Laiho, A. Paasio, Reducing the feature vector length in local binary pattern based face recognition, in: Image Processing, 2005. ICIP 2005. IEEE International Conference on, (IEEE2005), 2005, pp. II-914–917.
P. Paclík, R.P.W. Duin, G.M.P. Van Kempen, R. Kohlus, Supervised segmentation of textures in backscatter images, in: Pattern Recognition, 2002. Proceedings. 16th International Conference on, (IEEE2002), 2002, pp. 490–493.
Nanni, 2008, Local binary patterns for a hybrid fingerprint matcher, Pattern Recognit., 41, 3461, 10.1016/j.patcog.2008.05.013
Nanni, 2010, Local binary patterns variants as texture descriptors for medical image analysis, Artif. Intell. Med., 49, 117, 10.1016/j.artmed.2010.02.006
Liao, 2009, Dominant local binary patterns for texture classification, IEEE Trans. Image Process., 18, 1107, 10.1109/TIP.2009.2015682
Heikkilä, 2009, Description of interest regions with local binary patterns, Pattern Recognit., 42, 425, 10.1016/j.patcog.2008.08.014
T. Ahonen, M. Pietikäinen, Soft histograms for local binary patterns, in: Proceedings of the Finnish Signal Processing Symposium, FINSIG, 2007, p. 1.
Zhao, 2013, Completed robust local binary pattern for texture classification, Neurocomputing, 106, 68, 10.1016/j.neucom.2012.10.017
Mizukami, 2006, Moisture content measurement of tea leaves by electrical impedance and capacitance, Biosyst. Eng., 93, 293, 10.1016/j.biosystemseng.2005.12.009
Shinskey, 1990
Gill, 2011, Monitoring and grading of tea by computer vision—a review, J. Food Eng., 106, 13, 10.1016/j.jfoodeng.2011.04.013
Haralick, 1973, Textural features for image classification, IEEE Trans. Syst. Man Cybern., 610, 10.1109/TSMC.1973.4309314
Ulaby, 1986, Textural information in SAR images, IEEE Trans. Geosci. Remote Sens., 24, 235, 10.1109/TGRS.1986.289643
Hua, 2006, Research on computation of GLCM of image texture, Acta Electron. Sin., 1, 155
Ohanian, 1992, Performance evaluation for four classes of textural features, Pattern Recognit., 25, 819, 10.1016/0031-3203(92)90036-I
Clausi, 2004, Comparing cooccurrence probabilities and Markov random fields for texture analysis of SAR sea ice imagery, IEEE Trans. Geosci. Remote Sens., 42, 215, 10.1109/TGRS.2003.817218