A local binary pattern based texture descriptors for classification of tea leaves

Neurocomputing - Tập 168 - Trang 1011-1023 - 2015
Zhe Tang1, Yuancheng Su1, Meng Joo Er2, Fang Qi1, Li Zhang3, Jianyong Zhou3
1School of Information Science and Engineering, Central South University, Changsha 410083, China
2School of Electrical & Electronic Engineering College of Engineering, Nanyang Technological University, Singapore 639798, Singapore
3Changsha Xiangfeng Tea Machinery Manufacturing Co., Ltd., Changsha, 410100, China

Tài liệu tham khảo

Wu, 2008, Application of image texture for the sorting of tea categories using multi-spectral imaging technique and support vector machine, J. Food Eng., 88, 474, 10.1016/j.jfoodeng.2008.03.005 Chen, 2007, Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM), Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 66, 568, 10.1016/j.saa.2006.03.038 Borah, 2007, Wavelet transform based image texture analysis for size estimation applied to the sorting of tea granules, J. Food Eng., 79, 629, 10.1016/j.jfoodeng.2006.02.022 Gill, 2013, Nondestructive grading of black tea based on physical parameters by texture analysis, Biosyst. Eng., 116, 198, 10.1016/j.biosystemseng.2013.08.002 Borah, 2003, Non-destructive testing of tea fermentation using image processing, insight-non-destructive testing and condition monitoring, J. Br. Inst. Nondestr. Test., 45, 55 Palacios-Morillo, 2013, Differentiation of tea varieties using UV–Vis spectra and pattern recognition techniques, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 103, 79, 10.1016/j.saa.2012.10.052 Laddi, 2013, Classification of tea grains based upon image texture feature analysis under different illumination conditions, J. Food Eng., 115, 226, 10.1016/j.jfoodeng.2012.10.018 Li, 2011, Using wavelet transform and multi-class least square support vector machine in multi-spectral imaging classification of Chinese famous tea, Expert Syst. Appl., 38, 11149, 10.1016/j.eswa.2011.02.160 Chen, 2008, Identification of tea varieties using computer vision, Trans. ASABE, 51, 623, 10.13031/2013.24363 Li, 2003, Texture classification using the support vector machines, Pattern Recognit., 36, 2883, 10.1016/S0031-3203(03)00219-X Liu, 2014, Traffic sign recognition using group sparse coding, Inf. Sci., 266, 75, 10.1016/j.ins.2014.01.010 Ojala, 2002, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., 24, 971, 10.1109/TPAMI.2002.1017623 Yang, 2013, A comparative study on local binary pattern (LBP) based face recognition: LBP histogram versus LBP image, Neurocomputing, 120, 365, 10.1016/j.neucom.2012.10.032 Shih, 2004, Automatic extraction of head and face boundaries and facial features, Inf. Sci., 158, 117, 10.1016/j.ins.2003.03.002 Ahonen, 2006, Face description with local binary patterns: application to face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 28, 2037, 10.1109/TPAMI.2006.244 Nanni, 2007, RegionBoost learning for 2D+ 3D based face recognition, Pattern Recognit. Lett., 28, 2063, 10.1016/j.patrec.2007.06.003 Zhao, 2007, Dynamic texture recognition using local binary patterns with an application to facial expressions, IEEE Trans. Pattern Anal. Mach. Intell., 29, 915, 10.1109/TPAMI.2007.1110 O. Lahdenoja, M. Laiho, A. Paasio, Reducing the feature vector length in local binary pattern based face recognition, in: Image Processing, 2005. ICIP 2005. IEEE International Conference on, (IEEE2005), 2005, pp. II-914–917. P. Paclík, R.P.W. Duin, G.M.P. Van Kempen, R. Kohlus, Supervised segmentation of textures in backscatter images, in: Pattern Recognition, 2002. Proceedings. 16th International Conference on, (IEEE2002), 2002, pp. 490–493. Nanni, 2008, Local binary patterns for a hybrid fingerprint matcher, Pattern Recognit., 41, 3461, 10.1016/j.patcog.2008.05.013 Nanni, 2010, Local binary patterns variants as texture descriptors for medical image analysis, Artif. Intell. Med., 49, 117, 10.1016/j.artmed.2010.02.006 Liao, 2009, Dominant local binary patterns for texture classification, IEEE Trans. Image Process., 18, 1107, 10.1109/TIP.2009.2015682 Heikkilä, 2009, Description of interest regions with local binary patterns, Pattern Recognit., 42, 425, 10.1016/j.patcog.2008.08.014 T. Ahonen, M. Pietikäinen, Soft histograms for local binary patterns, in: Proceedings of the Finnish Signal Processing Symposium, FINSIG, 2007, p. 1. Zhao, 2013, Completed robust local binary pattern for texture classification, Neurocomputing, 106, 68, 10.1016/j.neucom.2012.10.017 Mizukami, 2006, Moisture content measurement of tea leaves by electrical impedance and capacitance, Biosyst. Eng., 93, 293, 10.1016/j.biosystemseng.2005.12.009 Shinskey, 1990 Gill, 2011, Monitoring and grading of tea by computer vision—a review, J. Food Eng., 106, 13, 10.1016/j.jfoodeng.2011.04.013 Haralick, 1973, Textural features for image classification, IEEE Trans. Syst. Man Cybern., 610, 10.1109/TSMC.1973.4309314 Ulaby, 1986, Textural information in SAR images, IEEE Trans. Geosci. Remote Sens., 24, 235, 10.1109/TGRS.1986.289643 Hua, 2006, Research on computation of GLCM of image texture, Acta Electron. Sin., 1, 155 Ohanian, 1992, Performance evaluation for four classes of textural features, Pattern Recognit., 25, 819, 10.1016/0031-3203(92)90036-I Clausi, 2004, Comparing cooccurrence probabilities and Markov random fields for texture analysis of SAR sea ice imagery, IEEE Trans. Geosci. Remote Sens., 42, 215, 10.1109/TGRS.2003.817218