A lithotrophic microbial fuel cell operated with pseudomonads‐dominated iron‐oxidizing bacteria enriched at the anode

Microbial Biotechnology - Tập 8 Số 3 - Trang 579-589 - 2015
Thuy Thu Thi Nguyen1, Tha Thanh Thi Luong1, Phuong Hoang Tran1, Bùi Thị Việt Hà2,1, Huy Quang Nguyen3,1, Hang Thuy Dinh4, Byung Hong Kim5,6,7, Hai The Pham2,1
1Research group for Physiology and Applications of Microorganisms (PHAM group) at Center for Life Science Research Vietnam National University – University of Science Nguyen Trai 334, Thanh Xuan Hanoi Vietnam
2Department of Microbiology Faculty of Biology Vietnam National University – University of Science Nguyen Trai 334, Thanh Xuan Hanoi Vietnam
3Department of Biochemistry Faculty of Biology Vietnam National University – University of Science Nguyen Trai 334, Thanh Xuan Hanoi Vietnam
4Laboratory of Microbial Ecology, Institute of Microbiology and Biology, Vietnam National University, Xuan Thuy 144, Cau Giay, Hanoi, Vietnam
5Fuel Cell Institute, National University of Malaysia, Bangi, 43600 UKM Selangor, Malaysia
6Korea Institute of Science and Technology, Hwarangno 14-gil, 5 Seongbuk-gu, Seoul, 136-791 Korea
7School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin, 150090 China

Tóm tắt

Summary

In this study, we attempted to enrich neutrophilic iron bacteria in a microbial fuel cell (MFC)‐type reactor in order to develop a lithotrophic MFC system that can utilize ferrous iron as an inorganic electron donor and operate at neutral pHs. Electrical currents were steadily generated at an average level of 0.6 mA (or 0.024 mA cm–2 of membrane area) in reactors initially inoculated with microbial sources and operated with 20 mM Fe2+ as the sole electron donor and 10 ohm external resistance; whereas in an uninoculated reactor (the control), the average current level only reached 0.2 mA (or 0.008 mA cm–2 of membrane area). In an inoculated MFC, the generation of electrical currents was correlated with increases in cell density of bacteria in the anode suspension and coupled with the oxidation of ferrous iron. Cultivation‐based and denaturing gradient gel electrophoresis analyses both show the dominance of some Pseudomonas species in the anode communities of the MFCs. Fluorescent in‐situ hybridization results revealed significant increases of neutrophilic iron‐oxidizing bacteria in the anode community of an inoculated MFC. The results, altogether, prove the successful development of a lithotrophic MFC system with iron bacteria enriched at its anode and suggest a chemolithotrophic anode reaction involving some Pseudomonas species as key players in such a system. The system potentially offers unique applications, such as accelerated bioremediation or on‐site biodetection of iron and/or manganese in water samples.

Từ khóa


Tài liệu tham khảo

10.1021/es0525511

10.1007/BF02918975

10.1016/S0022-2836(05)80360-2

10.1111/j.1751-7915.2011.00302.x

10.1128/AEM.66.7.2906-2913.2000

Boon N., 2002, Evaluation of nested PCR‐DGGE (denaturing gradient gel electrophoresis) with group‐specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants, Fems Microbiol Ecol, 39, 101

10.1016/j.mimet.2012.01.021

10.1016/j.jpowsour.2013.10.014

10.1021/es062580r

Cullimore D.R., 1978, Aquatic Microbiology, 219

10.1016/j.biortech.2014.01.036

10.1016/S0956-5663(02)00110-0

10.1021/ef700294x

10.1099/mic.0.045344-0

10.1021/es0608545

10.1021/es0702824

10.1038/ismej.2013.217

Kim B.H., 1999, Direct electrode reaction of Fe(III)‐reducing bacterium, Shewanella putrefaciens, J Microbiol Biotechnol, 9, 127

10.1023/A:1022891231369

10.1007/s00253-003-1412-6

10.1007/s00253-007-1027-4

10.1016/S0378-1097(03)00356-2

10.1016/j.tim.2006.10.003

10.1021/es0605016

10.1016/j.copbio.2011.01.009

Madigan M.T., 2004, Brock Biology of Microorganisms

10.1111/j.1462-2920.2008.01572.x

Muyzer G., 1993, Profiling of complex microbial populations using denaturing gradient gel electrophoresis analysis of polymerase chain reaction‐amplified genes coding for 16S rRNA, Appl Environ Microbiol, 59, 695, 10.1128/aem.59.3.695-700.1993

10.1016/j.biortech.2009.10.017

10.1016/j.watres.2009.04.004

Pham T.H., 2004, Improvement of cathode reaction of a mediatorless microbial fuel cell, J Microbiol Biotechnol, 14, 324

Pham T.H., 2005, Improved performance of microbial fuel cell using membrane‐electrode assembly, J Microbiol Biotechnol, 15, 438

10.1002/elsc.200620121

10.1111/j.1751-7915.2008.00049.x

10.1007/s00253-007-1248-6

10.1038/nrmicro2422

10.1016/j.tibtech.2005.04.008

10.1128/AEM.70.9.5373-5382.2004

10.1021/es048563o

10.1021/es060382u

10.1038/ismej.2007.4

10.1038/nature03661

10.1016/j.copbio.2010.03.010

10.1016/j.ijhydene.2005.12.006

10.1016/j.tibtech.2008.04.008

10.1128/AEM.63.2.644-651.1997

10.1016/j.corsci.2007.07.008

10.1128/AEM.62.4.1458-1460.1996

10.1080/01490450903263400

10.1016/j.biotechadv.2013.10.001