A light-driven nanopipette ion pump for probing subcellular oxygen levels

Device - Tập 1 - Trang 100001 - 2023
Si-Yuan Yu1, Yi-Li Liu1, Hang Dong1, Yi-Tong Xu1, Jin Hu2, Peng Lin2, Wei-Wei Zhao1, Dechen Jiang1, Hong-Yuan Chen1, Jing-Juan Xu1
1State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
2Shenzhen Key Laboratory of Special Functional Materials & Guangdong, Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China

Tài liệu tham khảo

Hsu, 2008, Cancer cell metabolism: Warburg and beyond, Cell, 134, 703, 10.1016/j.cell.2008.08.021 Lee, 2020, Cellular adaptation to hypoxia through hypoxia inducible factors and beyond, Nat. Rev. Mol. Cell Biol., 21, 268, 10.1038/s41580-020-0227-y Nakazawa, 2016, Oxygen availability and metabolic adaptations, Nat. Rev. Cancer, 16, 663, 10.1038/nrc.2016.84 Bertout, 2008, The impact of O2 availability on human cancer, Nat. Rev. Cancer, 8, 967, 10.1038/nrc2540 Cairns, 2011, Regulation of cancer cell metabolism, Nat. Rev. Cancer, 11, 85, 10.1038/nrc2981 Sharma, 2019, Hypoxia-targeted drug delivery, Chem. Soc. Rev., 48, 771, 10.1039/C8CS00304A Roussakis, 2015, Oxygen-sensing methods in biomedicine from the macroscale to the microscale, Angew. Chem. Int. Ed., 54, 8340, 10.1002/anie.201410646 Zhang, 2021, Two-channel responsive luminescent chemosensors for dioxygen species: molecular oxygen, singlet oxygen and superoxide anion, Coord. Chem. Rev., 427, 10.1016/j.ccr.2020.213575 Zheng, 2015, Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo, Nat. Commun., 6, 5834, 10.1038/ncomms6834 Guillaume-Gentil, 2016, Tunable single-cell extraction for molecular analyses, Cell, 166, 506, 10.1016/j.cell.2016.06.025 Stetter, 2008, Amperometric gas sensors-a review, Chem. Rev., 108, 352, 10.1021/cr0681039 Nguyen, 2019, Nanostars on nanopipette tips: a Raman probe for quantifying oxygen levels in hypoxic single cells and tumours, Angew. Chem. Int. Ed., 58, 2710, 10.1002/anie.201812677 Zhao, 2014, Photoelectrochemical DNA biosensors, Chem. Rev., 114, 7421, 10.1021/cr500100j Shi, 2022, Photoelectrochemical biosensing platforms for tumor marker detection, Coord. Chem. Rev., 469, 10.1016/j.ccr.2022.214675 Victorious, 2021, Enhancing the sensitivity of photoelectrochemical DNA biosensing using plasmonic DNA barcodes and differential signal readout, Angew. Chem. Int. Ed., 60, 7316, 10.1002/anie.202014329 Yang, 2021, Carbon nitride of five-membered rings with low optical bandgap for photoelectrochemical biosensing, Chem, 7, 2708, 10.1016/j.chempr.2021.06.010 Fu, 2019, Rationally engineered photonic-plasmonic synergistic resonators in second near-infrared window for in vivo photoelectrochemical biodetection, Nano Lett., 19, 9069, 10.1021/acs.nanolett.9b04172 Ye, 2021, FRET modulated signaling: a versatile strategy to construct photoelectrochemical microsensors for in vivo analysis, Angew. Chem. Int. Ed., 60, 11774, 10.1002/anie.202101468 Ruan, 2021, An integrated photoelectrochemical nanotool for intracellular drug delivery and treatment effect evaluation, Angew. Chem. Int. Ed., 60, 25762, 10.1002/anie.202111608 Wang, 2022, A photoelectrochemical nanoreactor for single-cell sampling and near zero-background faradic detection of intracellular microRNA, Angew. Chem. Int. Ed., 61 Chun, 2015, Iontronics, Annu. Rev. Anal. Chem., 8, 441, 10.1146/annurev-anchem-071114-040202 Xiao, 2020, Bioinspired ionic sensory systems: the successor of electronics, Adv. Mater., 32, 10.1002/adma.202000218 Hou, 2021, Bioinspired nanofluidic iontronics, Science, 373, 628, 10.1126/science.abj0437 Ying, 2018, Asymmetric nanopore electrode-based amplification for electron transfer imaging in live cells, J. Am. Chem. Soc., 140, 5385, 10.1021/jacs.7b12106 Zhang, 2019, Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis, Nat. Rev. Chem, 4, 6, 10.1038/s41570-019-0149-4 Rozenberg, 2021, Microbial rhodopsins: the last two decades, Annu. Rev. Microbiol., 75, 427, 10.1146/annurev-micro-031721-020452 Mei, 2022, Bioinspired artificial ion pumps, ACS Nano, 16, 13323, 10.1021/acsnano.2c04550 Liu, 2021, Synergy of light and acid–base reaction in energy conversion based on cellulose nanofiber intercalated titanium carbide composite nanofluidics, Energy Environ. Sci., 14, 4400, 10.1039/D1EE00908G Hu, 2022, Light-driven proton transport across liposomal membranes enabled by Janus metal-organic layers, Chem, 10, 450, 10.1016/j.chempr.2021.10.020 Xiao, 2019, Artificial light-driven ion pump for photoelectric energy conversion, Nat. Commun., 10, 74, 10.1038/s41467-018-08029-5 Yang, 2019, Photo-induced ultrafast active ion transport through graphene oxide membranes, Nat. Commun., 10, 1171, 10.1038/s41467-019-09178-x Cai, 2022, Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles, Nat. Nanotechnol., 17, 408, 10.1038/s41565-022-01079-3 Kim, 2017, Integration of optogenetics with complementary methodologies in systems neuroscience, Nat. Rev. Neurosci., 18, 222, 10.1038/nrn.2017.15 Phan, 2017, Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging, Nat. Rev. Chem, 1, 0048, 10.1038/s41570-017-0048 Gao, 2019, Wireless nanopore electrodes for analysis of single entities, Nat. Protoc., 14, 2015, 10.1038/s41596-019-0171-5 Xiong, 2023, Neuromorphic functions with a polyelectrolyte-confined fluidic memristor, Science, 379, 156, 10.1126/science.adc9150 Yan, 2017, Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100, Nat. Energy, 2, 10.1038/nenergy.2017.52 Dai, 2017, Hybrid PbS quantum dot/nanoporous NiO film nanostructure: preparation, characterization, and application for a self-powered cathodic photoelectrochemical biosensor, Anal. Chem., 89, 8070, 10.1021/acs.analchem.7b01557 Rivnay, 2018, Organic electrochemical transistors, Nat. Rev. Mater., 3, 10.1038/natrevmats.2017.86 Hu, 2022, Multifunctional hydrogel hybrid-gated organic photoelectrochemical transistor for biosensing, Adv. Funct. Mater., 32, 10.1002/adfm.202109046 Malinkiewicz, 2014, Perovskite solar cells employing organic charge-transport layers, Nat. Photonics, 8, 128, 10.1038/nphoton.2013.341 Xu, 2019, Cathodic photoelectrochemical bioanalysis, Trends Anal. Chem., 114, 81, 10.1016/j.trac.2019.03.002 Pan, 2018, Direct electrochemical observation of glucosidase activity in isolated single lysosomes from a living cell, Proc. Natl. Acad. Sci. USA, 115, 4087, 10.1073/pnas.1719844115 Nadappuram, 2019, Nanoscale tweezers for single-cell biopsies, Nat. Nanotechnol., 14, 80, 10.1038/s41565-018-0315-8 Hu, 2020, Correlating molecule count and release kinetics with vesicular size using open carbon nanopipettes, J. Am. Chem. Soc., 142, 16910, 10.1021/jacs.0c07169 Shi, 2023, Electrochemical single-cell protein therapeutics using a double-barrel nanopipette, Angew. Chem. Int. Ed., 62, 10.1002/anie.202215801 Qi, 2022, Homeostasis inside single activated phagolysosomes: quantitative and selective measurements of submillisecond dynamics of reactive oxygen and nitrogen species production with a nanoelectrochemical sensor, J. Am. Chem. Soc., 144, 9723, 10.1021/jacs.2c01857 Pan, 2022, Electrochemical molecule trap-based sensing of low-abundance enzymes in one living cell, J. Am. Chem. Soc., 144, 17558, 10.1021/jacs.2c06962 Berggren, 2019, How conducting polymer electrodes operate, Science, 364, 233, 10.1126/science.aaw9295 Lin, 2020, Charge inversion and calcium gating in mixtures of ions in nanopores, J. Am. Chem. Soc., 142, 2925, 10.1021/jacs.9b11537 Wang, 2018, Enzyme-initiated quinone-chitosan conjugation chemistry: toward a general in situ strategy for high-throughput photoelectrochemical enzymatic bioanalysis, Anal. Chem., 90, 1492, 10.1021/acs.analchem.7b04625 Wei, 1997, Current rectification at quartz nanopipet electrodes, Anal. Chem., 69, 4627, 10.1021/ac970551g Jiang, 2017, Insight into ion transfer through the sub-nanometer channels in zeolitic imidazolate frameworks, Angew. Chem. Int. Ed., 56, 4767, 10.1002/anie.201701279 Sander, 2015, Compilation of Henry’s law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399, 10.5194/acp-15-4399-2015 Ghosh, 2015, Conducting polymer nanostructures for photocatalysis under visible light, Nat. Mater., 14, 505, 10.1038/nmat4220 Yi, 2023, Modular engineering of DNAzyme-based sensors for spatioselective imaging of metal ions in mitochondria, J. Am. Chem. Soc., 145, 1678, 10.1021/jacs.2c11081 Jastroch, 2010, Mitochondrial proton and electron leaks, Essays Biochem., 47, 53, 10.1042/bse0470053