A level-set formulation to simulate diffusive solid/solid phase transformation in polycrystalline metallic materials - Application to austenite decomposition in steels

Computational Materials Science - Tập 216 - Trang 111840 - 2023
N. Chandrappa1, M. Bernacki1
1Mines Paris, PSL University, Centre for material forming (CEMEF), UMR CNRS, 06904 Sophia Antipolis, France

Tài liệu tham khảo

Martin, 1997 James, 1986, Displacive phase transformations in solids, J. Mech. Phys. Solids, 34, 359, 10.1016/0022-5096(86)90008-6 Gamsjäger, 2002, Diffusional phase transformation and deformation in steels, Comput. Mater. Sci., 25, 92, 10.1016/S0927-0256(02)00253-7 Montheillet, 2009, A grain scale approach for modeling steady-state discontinuous dynamic recrystallization, Acta Mater., 57, 1602, 10.1016/j.actamat.2008.11.044 Maire, 2018, A new topological approach for the mean field modeling of dynamic recrystallization, MatDes, 146, 194 Perez, 2008, Implementation of classical nucleation and growth theories for precipitation, Acta Mater., 56, 2119, 10.1016/j.actamat.2007.12.050 Seret, 2020, A mean field model of agglomeration as an extension to existing precipitation models, Acta Mater., 192, 40, 10.1016/j.actamat.2020.04.029 Jin, 2006, Atomic density function theory and modeling of microstructure evolution at the atomic scale, J. Appl. Phys., 100, 10.1063/1.2213353 Mishin, 2010, Atomistic modeling of interfaces and their impact on microstructure and properties, Acta Mater., 58, 1117, 10.1016/j.actamat.2009.10.049 Janssens, 2010 Rollett, 1989, Computer simulation of recrystallization in non-uniformly deformed metals, Acta Metall., 37, 627, 10.1016/0001-6160(89)90247-2 Raabe, 2002, Cellular automata in materials science with particular reference to recrystallization simulation, Annu. Rev. Mater. Res., 32, 53, 10.1146/annurev.matsci.32.090601.152855 Steinbach, 2009, Phase-field models in materials science, Modelling Simulation Mater. Sci. Eng., 17, 10.1088/0965-0393/17/7/073001 C.E., 2002, Computer simulation of 3-D grain growth using a phase-field model, Acta Mater., 50, 3059, 10.1016/S1359-6454(02)00084-8 Salama, 2020, Role of inclination dependence of grain boundary energy on the microstructure evolution during grain growth, Acta Mater., 188, 641, 10.1016/j.actamat.2020.02.043 Takaki, 2015, Phase-field modeling for dynamic recrystallization, 441 Hiebeler, 2016, Modelling of flow behaviour and dynamic recrystallization during hot deformation of MS-W 1200 using the phase field framework, MATEC Web Conf., 80, 01003, 10.1051/matecconf/20168001003 Cai, 2020, Phase field modeling of discontinuous dynamic recrystallization in hot deformation of magnesium alloys, Int. J. Plast., 133, 10.1016/j.ijplas.2020.102773 Florez, 2020, A novel highly efficient Lagrangian model for massively multidomain simulation applied to microstructural evolutions, Comput. Methods Appl. Mech. Eng., 367, 10.1016/j.cma.2020.113107 Florez, 2022, Statistical behaviour of interfaces subjected to curvature flow and torque effects applied to microstructural evolutions, Acta Mater., 222, 10.1016/j.actamat.2021.117459 Barrales-Mora, 2008, Three-dimensional grain growth: Analytical approaches and computer simulations, Acta Mater., 56, 5915, 10.1016/j.actamat.2008.08.006 Merriman, 1994, Motion of multiple junctions: a level set approach, J. Comput. Phys., 112, 334, 10.1006/jcph.1994.1105 Bernacki, 2008, Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scr. Mater., 58, Pages 1129, 10.1016/j.scriptamat.2008.02.016 Wheeler, 1992, Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A, 45, 7424, 10.1103/PhysRevA.45.7424 Steinbach, 1996, A phase field concept for multiphase systems, Physica D, 94, 135, 10.1016/0167-2789(95)00298-7 Tiaden, 1998, The multiphase-field model with an integrated concept for modelling solute diffusion, Physica D, 115, 73, 10.1016/S0167-2789(97)00226-1 Yeon, 2001, A phase field study for ferrite–austenite transitions under paraequilibrium, Scr. Mater., 45, 661, 10.1016/S1359-6462(01)01077-6 Hillert, 2004, On the definitions of paraequilibrium and orthoequilibrium, Scr. Mater., 50, 697, 10.1016/j.scriptamat.2003.11.020 Pariser, 2001, Simulation of the γ−α transformation using the phase-field method, Steel Res., 72, 354, 10.1002/srin.200100130 Micress, the microstructure evolution simulation software. http://www.micress.de/. Huang, 2006, A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels, Acta Mater., 54, 11, 10.1016/j.actamat.2005.08.033 Mecozzi, 2006 Militzer, 2006, Three-dimensional phase field modelling of the austenite-to-ferrite transformation, Acta Mater., 54, 3961, 10.1016/j.actamat.2006.04.029 Kovačević, 2006, Solid-solid phase transformations in aluminium alloys described by a multiphase-field model, vol. 508, 579 Malik, 2017, Phase-field modeling of sigma-phase precipitation in 25Cr7Ni4Mo duplex stainless steel, Metall. Mater. Trans. A, 10.1007/s11661-017-4214-7 Tong, 2005, A q-state potts model-based Monte Carlo method used to model the isothermal austenite–ferrite transformation under non-equilibrium interface condition, Acta Mater., 53, 1485, 10.1016/j.actamat.2004.12.002 Varma, 2001, Cellular automaton simulation of microstructure evolution during austenite decomposition under continuous cooling conditions, Bull. Mater. Sci., 24, 305, 10.1007/BF02704927 Lan, 2004, Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automaton method, Acta Mater. - Acta Mater., 52, 1721, 10.1016/j.actamat.2003.12.045 Maire, 2017, Modeling of dynamic and post-dynamic recrystallization by coupling a full field approach to phenomenological laws, Mater. Des., 133, 498, 10.1016/j.matdes.2017.08.015 Maire, 2018 Bernacki, 2011, Level set framework for the finite element modelling of recrystallization and grain growth in polycrystalline materials, Scr. Mater., 64, 525, 10.1016/j.scriptamat.2010.11.032 Fausty, 2018, A novel level-set finite element formulation for grain growth with heterogeneous grain boundary energies, Mater. Des., 160, 578, 10.1016/j.matdes.2018.09.050 Alvarado, 2021, A level set approach to simulate grain growth with an evolving population of second phase particles, Model. Simul. Mater. Sci. Eng., 29, 10.1088/1361-651X/abe0a7 Liss, 2009, In situ study of dynamic recrystallization and hot deformation behavior of a multiphase titanium aluminide alloy, J. Appl. Phys., 106, 10.1063/1.3266177 Olsson, 2005, A conservative level set method for two phase flow, J. Comput. Phys., 210, 225, 10.1016/j.jcp.2005.04.007 Sethian, 1999 Scholtes, 2015, New finite element developments for the full field modeling of microstructural evolutions using the level-set method, Comput. Mater. Sci., 109, 388, 10.1016/j.commatsci.2015.07.042 Rollett, 2017 Christian, 1975, The theory of transformations in metals and alloys. I, Equilib. Gen. Kinet. Theory, 586 Shakoor, 2015, An efficient and parallel level set reinitialization method–application to micromechanics and microstructural evolutions, Appl. Math. Model., 39, 7291, 10.1016/j.apm.2015.03.014 Bernacki, 2009, Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework, Modelling Simulation Mater. Sci. Eng., 17, 10.1088/0965-0393/17/6/064006 Ilin, 2018, Full field modeling of recrystallization: Effect of intragranular strain gradients on grain boundary shape and kinetics, Comput. Mater. Sci., 150, 149, 10.1016/j.commatsci.2018.03.063 Steinbach, 2007, CALPHAD and phase-field modeling: a successful liaison, J. Phase Equilib. Diffus., 28, 101, 10.1007/s11669-006-9009-2 Thermo-Calc Software, http://www.thermocalc.se/. Mecozzi, 2011, Quantitative comparison of the phase-transformation kinetics in a sharp-interface and a phase-field model, Comput. Mater. Sci., 50, 1846, 10.1016/j.commatsci.2011.01.028 Liu, 2018, A review on the modeling and simulations of solid-state diffusional phase transformations in metals and alloys, Manuf. Rev., 5, 10 Hillert, 2007 Brooks, 1982, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199, 10.1016/0045-7825(82)90071-8 Sietsma, 2004, A concise model for mixed-mode phase transformations in the solid state, Acta Mater., 52, 4143, 10.1016/j.actamat.2004.05.027 Logan, 1982, The origin and status of the Arrhenius equation, J. Chem. Educ., 59, 279, 10.1021/ed059p279 Krielaart, 1998, Kinetics of γ→α phase transformation in Fe-Mn alloys containing low manganese, Mater. Sci. Technol., 14, 10, 10.1179/mst.1998.14.1.10 Chen, 2011, Modeling of soft impingement effect during solid-state partitioning phase transformations in binary alloys, J. Mater. Sci., 46, 1328, 10.1007/s10853-010-4922-5 Loginova, 2003, The phase-field approach and solute drag modeling of the transition to massive γ→α transformation in binary Fe-C alloys, Acta Mater., 51, 1327, 10.1016/S1359-6454(02)00527-X Gruau, 2004