A level-set formulation to simulate diffusive solid/solid phase transformation in polycrystalline metallic materials - Application to austenite decomposition in steels
Tài liệu tham khảo
Martin, 1997
James, 1986, Displacive phase transformations in solids, J. Mech. Phys. Solids, 34, 359, 10.1016/0022-5096(86)90008-6
Gamsjäger, 2002, Diffusional phase transformation and deformation in steels, Comput. Mater. Sci., 25, 92, 10.1016/S0927-0256(02)00253-7
Montheillet, 2009, A grain scale approach for modeling steady-state discontinuous dynamic recrystallization, Acta Mater., 57, 1602, 10.1016/j.actamat.2008.11.044
Maire, 2018, A new topological approach for the mean field modeling of dynamic recrystallization, MatDes, 146, 194
Perez, 2008, Implementation of classical nucleation and growth theories for precipitation, Acta Mater., 56, 2119, 10.1016/j.actamat.2007.12.050
Seret, 2020, A mean field model of agglomeration as an extension to existing precipitation models, Acta Mater., 192, 40, 10.1016/j.actamat.2020.04.029
Jin, 2006, Atomic density function theory and modeling of microstructure evolution at the atomic scale, J. Appl. Phys., 100, 10.1063/1.2213353
Mishin, 2010, Atomistic modeling of interfaces and their impact on microstructure and properties, Acta Mater., 58, 1117, 10.1016/j.actamat.2009.10.049
Janssens, 2010
Rollett, 1989, Computer simulation of recrystallization in non-uniformly deformed metals, Acta Metall., 37, 627, 10.1016/0001-6160(89)90247-2
Raabe, 2002, Cellular automata in materials science with particular reference to recrystallization simulation, Annu. Rev. Mater. Res., 32, 53, 10.1146/annurev.matsci.32.090601.152855
Steinbach, 2009, Phase-field models in materials science, Modelling Simulation Mater. Sci. Eng., 17, 10.1088/0965-0393/17/7/073001
C.E., 2002, Computer simulation of 3-D grain growth using a phase-field model, Acta Mater., 50, 3059, 10.1016/S1359-6454(02)00084-8
Salama, 2020, Role of inclination dependence of grain boundary energy on the microstructure evolution during grain growth, Acta Mater., 188, 641, 10.1016/j.actamat.2020.02.043
Takaki, 2015, Phase-field modeling for dynamic recrystallization, 441
Hiebeler, 2016, Modelling of flow behaviour and dynamic recrystallization during hot deformation of MS-W 1200 using the phase field framework, MATEC Web Conf., 80, 01003, 10.1051/matecconf/20168001003
Cai, 2020, Phase field modeling of discontinuous dynamic recrystallization in hot deformation of magnesium alloys, Int. J. Plast., 133, 10.1016/j.ijplas.2020.102773
Florez, 2020, A novel highly efficient Lagrangian model for massively multidomain simulation applied to microstructural evolutions, Comput. Methods Appl. Mech. Eng., 367, 10.1016/j.cma.2020.113107
Florez, 2022, Statistical behaviour of interfaces subjected to curvature flow and torque effects applied to microstructural evolutions, Acta Mater., 222, 10.1016/j.actamat.2021.117459
Barrales-Mora, 2008, Three-dimensional grain growth: Analytical approaches and computer simulations, Acta Mater., 56, 5915, 10.1016/j.actamat.2008.08.006
Merriman, 1994, Motion of multiple junctions: a level set approach, J. Comput. Phys., 112, 334, 10.1006/jcph.1994.1105
Bernacki, 2008, Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scr. Mater., 58, Pages 1129, 10.1016/j.scriptamat.2008.02.016
Wheeler, 1992, Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A, 45, 7424, 10.1103/PhysRevA.45.7424
Steinbach, 1996, A phase field concept for multiphase systems, Physica D, 94, 135, 10.1016/0167-2789(95)00298-7
Tiaden, 1998, The multiphase-field model with an integrated concept for modelling solute diffusion, Physica D, 115, 73, 10.1016/S0167-2789(97)00226-1
Yeon, 2001, A phase field study for ferrite–austenite transitions under paraequilibrium, Scr. Mater., 45, 661, 10.1016/S1359-6462(01)01077-6
Hillert, 2004, On the definitions of paraequilibrium and orthoequilibrium, Scr. Mater., 50, 697, 10.1016/j.scriptamat.2003.11.020
Pariser, 2001, Simulation of the γ−α transformation using the phase-field method, Steel Res., 72, 354, 10.1002/srin.200100130
Micress, the microstructure evolution simulation software. http://www.micress.de/.
Huang, 2006, A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels, Acta Mater., 54, 11, 10.1016/j.actamat.2005.08.033
Mecozzi, 2006
Militzer, 2006, Three-dimensional phase field modelling of the austenite-to-ferrite transformation, Acta Mater., 54, 3961, 10.1016/j.actamat.2006.04.029
Kovačević, 2006, Solid-solid phase transformations in aluminium alloys described by a multiphase-field model, vol. 508, 579
Malik, 2017, Phase-field modeling of sigma-phase precipitation in 25Cr7Ni4Mo duplex stainless steel, Metall. Mater. Trans. A, 10.1007/s11661-017-4214-7
Tong, 2005, A q-state potts model-based Monte Carlo method used to model the isothermal austenite–ferrite transformation under non-equilibrium interface condition, Acta Mater., 53, 1485, 10.1016/j.actamat.2004.12.002
Varma, 2001, Cellular automaton simulation of microstructure evolution during austenite decomposition under continuous cooling conditions, Bull. Mater. Sci., 24, 305, 10.1007/BF02704927
Lan, 2004, Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automaton method, Acta Mater. - Acta Mater., 52, 1721, 10.1016/j.actamat.2003.12.045
Maire, 2017, Modeling of dynamic and post-dynamic recrystallization by coupling a full field approach to phenomenological laws, Mater. Des., 133, 498, 10.1016/j.matdes.2017.08.015
Maire, 2018
Bernacki, 2011, Level set framework for the finite element modelling of recrystallization and grain growth in polycrystalline materials, Scr. Mater., 64, 525, 10.1016/j.scriptamat.2010.11.032
Fausty, 2018, A novel level-set finite element formulation for grain growth with heterogeneous grain boundary energies, Mater. Des., 160, 578, 10.1016/j.matdes.2018.09.050
Alvarado, 2021, A level set approach to simulate grain growth with an evolving population of second phase particles, Model. Simul. Mater. Sci. Eng., 29, 10.1088/1361-651X/abe0a7
Liss, 2009, In situ study of dynamic recrystallization and hot deformation behavior of a multiphase titanium aluminide alloy, J. Appl. Phys., 106, 10.1063/1.3266177
Olsson, 2005, A conservative level set method for two phase flow, J. Comput. Phys., 210, 225, 10.1016/j.jcp.2005.04.007
Sethian, 1999
Scholtes, 2015, New finite element developments for the full field modeling of microstructural evolutions using the level-set method, Comput. Mater. Sci., 109, 388, 10.1016/j.commatsci.2015.07.042
Rollett, 2017
Christian, 1975, The theory of transformations in metals and alloys. I, Equilib. Gen. Kinet. Theory, 586
Shakoor, 2015, An efficient and parallel level set reinitialization method–application to micromechanics and microstructural evolutions, Appl. Math. Model., 39, 7291, 10.1016/j.apm.2015.03.014
Bernacki, 2009, Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework, Modelling Simulation Mater. Sci. Eng., 17, 10.1088/0965-0393/17/6/064006
Ilin, 2018, Full field modeling of recrystallization: Effect of intragranular strain gradients on grain boundary shape and kinetics, Comput. Mater. Sci., 150, 149, 10.1016/j.commatsci.2018.03.063
Steinbach, 2007, CALPHAD and phase-field modeling: a successful liaison, J. Phase Equilib. Diffus., 28, 101, 10.1007/s11669-006-9009-2
Thermo-Calc Software, http://www.thermocalc.se/.
Mecozzi, 2011, Quantitative comparison of the phase-transformation kinetics in a sharp-interface and a phase-field model, Comput. Mater. Sci., 50, 1846, 10.1016/j.commatsci.2011.01.028
Liu, 2018, A review on the modeling and simulations of solid-state diffusional phase transformations in metals and alloys, Manuf. Rev., 5, 10
Hillert, 2007
Brooks, 1982, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199, 10.1016/0045-7825(82)90071-8
Sietsma, 2004, A concise model for mixed-mode phase transformations in the solid state, Acta Mater., 52, 4143, 10.1016/j.actamat.2004.05.027
Logan, 1982, The origin and status of the Arrhenius equation, J. Chem. Educ., 59, 279, 10.1021/ed059p279
Krielaart, 1998, Kinetics of γ→α phase transformation in Fe-Mn alloys containing low manganese, Mater. Sci. Technol., 14, 10, 10.1179/mst.1998.14.1.10
Chen, 2011, Modeling of soft impingement effect during solid-state partitioning phase transformations in binary alloys, J. Mater. Sci., 46, 1328, 10.1007/s10853-010-4922-5
Loginova, 2003, The phase-field approach and solute drag modeling of the transition to massive γ→α transformation in binary Fe-C alloys, Acta Mater., 51, 1327, 10.1016/S1359-6454(02)00527-X
Gruau, 2004