A least squares algorithm for fitting data points to a circular arc cam

Measurement - Tập 102 - Trang 170-178 - 2017
Shan Lin1,2, Otto Jusko3, Frank Härtig1, Jörg Seewig2
1Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
2Institute for Measurement and Sensor-Technology, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße, 67663 Kaiserslautern, Germany
3Physikalisch Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

Tài liệu tham khảo

Norton, 2009 Künne, 2008 Williams, 2012 Rothbart, 2004 Gänssle, Interesting facts about camshafts. <http://www.gaenssle.de/Englisch/FrmSetE06.htm>. Qiu, 2000, A study on an evaluation method for form deviations of 2D contours from coordinate measurement, Int. J. Adv. Manuf. Technol., 16, 413, 10.1007/s001700050173 Kang, 2010, Measurement and evaluation of form deviation error of disk cam with an exclusively built profile-measuring machine, Robotics Comput.-Integr. Manuf., 26, 686, 10.1016/j.rcim.2010.03.005 Brazhkin, 2003, Checking the polar coordinates of distributor cam profiles using a flat follower, Meas. Tech., 46, 657, 10.1023/A:1025834800703 Biswas, 2004, A comparison of approximate methods for the analytical determination of profiles for disk cams with roller followers, Mech. Mach. Theory, 39, 645, 10.1016/j.mechmachtheory.2003.10.001 Atieg, 2004, Fitting circular arcs by orthogonal distance regression, Appl. Numer. Anal. Comput. Math., 1, 66, 10.1002/anac.200310006 Krystek, 2011, A least-squares algorithm for fitting data points with mutually correlated coordinates to a straight line, Meas. Sci. Technol., 22, 035101, 10.1088/0957-0233/22/3/035101 O. Jusko, F. Santel, F. Härtig, W. Adeyemi, K. Rost, R. Volk, Some aspects of traceability of camshafts and large gears, 2010. http://www.cenam.mx/ammc/eventos/evento2010/CENAM-CMM_User_Club_2010-Otto-Jusko.pdf. Al-Sharadqah, 2014, Further statistical analysis of circle fitting, Electron. J. Stat., 8, 2741, 10.1214/14-EJS971 Ahn, 2001, Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola, Pattern Recogn., 34, 2283, 10.1016/S0031-3203(00)00152-7 Gander, 1994, Least-squares fitting of circles and ellipses, BIT Numer. Math., 34, 558, 10.1007/BF01934268 Lim, 1995, Detection and estimation of circular arc segments, Pattern Recogn. Lett., 16, 627, 10.1016/0167-8655(95)00004-Z Pei, 1995, Circular arc detection based on Hough transform, Pattern Recogn. Lett., 16, 615, 10.1016/0167-8655(95)80007-G Björck, 1996 Kasa, 1976, A circle fitting procedure and its error analysis, IEEE Trans. Instrum. Meas., 25, 8, 10.1109/TIM.1976.6312298 Sourlier, 1995 JCGM 100. Evaluation of measurement data - Guide to the expression of uncertainty in measurement, 2008. JCGM 102. Evaluation of measurement data – Supplement 2 to the “Guide to the expression of uncertainty in measurement” – Extension to any number of output quantities, 2011. Ahn, 1999, Geometric fitting of line, plane, circle, sphere, and ellipse Forbes, 2009, Parameter estimation based on least squares methods, Data Model. Metrol. Test. Meas. Sci., 147 JCGM 101. Evaluation of measurement data – Supplement 1 to the “Guide to the expression of uncertainty in measurement” – Propagation of distributions using a Monte Carlo method, 2008. Cook, 1999 Hopp, 1994 Phillips, 1998, The estimation of measurement uncertainty of small circular features measured by coordinate measuring machines, Prec. Eng., 22, 87, 10.1016/S0141-6359(98)00006-3 Al-Sharadqah, 2009, Error analysis for circle fitting algorithms, Electron. J. Stat., 3, 886, 10.1214/09-EJS419