A latent class analysis of the public attitude towards the euro adoption in Poland
Tóm tắt
Latent class analysis can be viewed as a special case of model–based clustering for multivariate discrete data. It is assumed that each observation comes from one of a number of classes, groups or subpopulations, with its own probability distribution. The overall population thus follows a finite mixture model. When observed, data take the form of categorical responses—as, for example, in public opinion or consumer behavior surveys it is often of interest to identify and characterize clusters of similar objects. In the context of marketing research, one will typically interpret the latent number of mixture components as clusters or segments. In fact, LC analysis provides a powerful new tool to identify important market segments in target marketing. We used the model based clustering approach for grouping and detecting inhomogeneities of Polish opinions on the euro adoption. We analyzed data collected as part of the Polish General Social Survey using the R software.
Tài liệu tham khảo
Agresti A (2002) Categorical data analysis. John Wiley and Sons, Hoboken
Bandeen-Roche K, Miglioretti DL, Zeger SL, Rathouz PJ (1997) Latent variable regression for multiple discrete outcomes. J Am Stat Assoc 92(40):123–135
Banfield JD, Raftery AE (1993) Model-based Gaussian and non-Gaussian clustering. Biometrics 49(3): 803–821
Biernacki C, Celeux G, Govaert G (1999) Choosing models in model-based clustering and discriminant analysis. J Stat Comput Simul 64:49–71
Cichomski B, Jerzynski T (2009) Polskie Generalne Sondaze Spoleczne: skumulowany komputerowy zbiór danych 1992–2008. Instytut Studiow Spolecznych, Uniwersytet Warszawski, Warszawa
Collins LM, Lanza ST (2011) Latent class and latent transition analysis with applications in the social, behavioral, and health sciences. John Wiley and Sons, Wiley, pp 151–177
Clogg CC (1981) New developments in latent structure analysis. In: Jackson DJ, Borgotta EF (eds) Factor analysis and measurment in sociological research. Sage Publications, Beverly Hills, pp 215–246
Dayton CM, Macready GB (1988) Concomitant-variable latent-class models. J Am Stat Assoc 83(401): 173–178
Dempster AP, Laird NP, Rubin DB (1977) Maximum likelihood for incomplete data via the EM algorithm (with discussion). J R Stat Soc 39:1–38
Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97:611–631
Grün B, Leisch F (2008) FlexMix Version 2: finite mixtures with concomitant variables and varying and constant parameters. J Stat Softw 28(4):1–35
Hagenaars AJ, McCutcheon AL (2002) Applied latent class analysis. Cambridge University Press, Cambridge
Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795
Keribin C (1998) Consistent estimate of the order of mixture models. Comptes Rendus de l’Academie des Sciences, Serie I-Mathematicues 326:243–248
Lazarsfeld PF (1950a) The logical and mathematical foundations of latent structure analysis. In: Stouffer SA (ed) Measurement and prediction, the American soldier: studies in social psychology in World War II. Princton University Press, Princeton, pp 362–412
Lazarsfeld PF (1950b) The interpretation and computation of some latent structures. In: Stouffer (ed) Measurement and prediction, the American soldier: studies in social psychology in World War II. Princton University Press, Princeton, pp 413–472
Lazarsfeld PF, Henry NW (1968) Latent structure analysis. Houghton Miffin, Boston
Linzer DA, Lewis J (2011) poLCA: an R package for polytomous variable latent class analysis. J Stat Softw 42(10):1–29
McLachlan GJ, Peel D (2000) Finite mixtre models. Wiley, New York
Meilijson I (1989) A fast improvement to the EM algorithm on its own terms. J R Stat Soc 51(1):127–138
Osinska J, Toroj A (2012) Greek ricochet? What drove Poles’ attitudes to the euro in 2009–2010. Bank i Kredyt 43(4):29–84
Stanford D, Raftery AE (2000) Principal curve clustering with noise. IEEE Trans Pattern Anal Mach Intell 22:601–609
Titterington DM, Smith AFM, Makov UE (1985) Statistical analysis of finite mixtures of distributions. Wiley, New York
Vermunt JK (1997) Log-linear models for event histories, advanced quantitative techniques in the social sciences series. Sage Publikations, Thousand Oaks
Vermunt JK, Magidson J (2002) Latent class cluster analysis. In: Hagenaars J, McCutcheon A (eds) Applied latent class analysis. Cambridge University Press, Cambridge, pp 89–106
Vermunt JK (2010) Latent class modeling with covariates: two improved three-step approaches. Political Anal 18:450–469
Witek E (2010) Analysis of massive emigration from Poland—the model-based clustering approach. In: Proceedings of the 32nd annual conference of the Gesellschaft für Klassifikation. Springer, Berlin, pp 615–624
Witek E (2011a) Modele mieszanek dla danych jakosciowych. In: Gatnar E, Walesiak M (eds) Analiza danych jakosciowych i symbolicznych z wykorzystaniem programu R. C. H. Beck, Warszawa
Witek E (2011b) The comparison of model-based clustering with heuristic clustering methods. In: Domanski Cz, Bialek J (eds) Folia Oeconomica 255, Methodological aspects of multivariate statistical analysis, statsitcal models and applications. Wydawnictwo Uniwersytetu Lodzkiego, Lodz, pp 191–197
Wolfe JH (1963) Object cluster analysis of social areas. University of California, Barkeley Master’s thesis