A large-scale analysis of Persian Tweets regarding Covid-19 vaccination

Taha ShabaniMirzaei1, Houmaan Chamani1, Amirhossein Abaskohi1, Zhivar Sourati1, Behnam Bahrak2
1Department of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
2Tehran Institute for Advanced Studies, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barbieri F, Camacho-Collados J, Neves L, et al. (2020) Tweeteval: Unified benchmark and comparative evaluation for tweet classification. CoRR abs/2010.12421. arXiv:2010.12421

Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022

Bonnevie E, Goldbarg J, Gallegos-Jeffrey AK et al. (2020) Content themes and influential voices within vaccine opposition on twitter. Am J Public Health 110(S3):S326–S330. https://doi.org/10.2105/AJPH.2020.305901

Bonnevie E, Gallegos-Jeffrey A, Goldbarg J et al. (2021) Quantifying the rise of vaccine opposition on twitter during the covid-19 pandemic. J Commun Healthcare 14(1):12–19. https://doi.org/10.1080/17538068.2020.1858222

Bonnevie E, Gallegos-Jeffrey A, Goldbarg J et al. (2021) Quantifying the rise of vaccine opposition on twitter during the covid-19 pandemic. J Commun Healthcare 14(1):12–19. https://doi.org/10.1080/17538068.2020.1858222

Cascini F, Pantovic A, Al-Ajlouni YA, et al. (2022) Social media and attitudes towards a covid-19 vaccination: A systematic review of the literature. EClinicalMedicine

Chang J, Gerrish S, Wang C et al. (2009) Reading tea leaves: How humans interpret topic models. In: Bengio Y, Schuurmans D, Lafferty J et al. (eds) Advances in Neural Information Processing Systems. Curran Associates Inc

Chopra H, Vashishtha A, Pal R, et al. (2021) Mining trends of COVID-19 vaccine beliefs on twitter with lexical embeddings. CoRR arXiv:2104.01131

Conneau A, Khandelwal K, Goyal N, et al. (2019) Unsupervised cross-lingual representation learning at scale. CoRR arXiv:1911.02116

Devlin J, Chang M, Lee K, et al. (2018) BERT: pre-training of deep bidirectional transformers for language understanding. CoRR arXiv:1810.04805

Dodds PS, Harris KD, Kloumann IM et al. (2011) Temporal patterns of happiness and information in a global social network: Hedonometrics and twitter. PLOS ONE 6(12):1–1. https://doi.org/10.1371/journal.pone.0026752

Durmaz N, Hengirmen E (2022) The dramatic increase in anti-vaccine discourses during the covid-19 pandemic: a social network analysis of twitter. Human Vaccin Immunotherap 18(1):2025

Gharachorloo M, Farahani M, Farahani M et al. (2021) Parsbert: transformer-based model for Persian language understanding. Neural Process Lett. https://doi.org/10.1007/s11063-021-10528-4

Filter J (2022) Functions to preprocess and normalize text. https://pypi.org/project/clean-text/, [Online; accessed 21-April-2022]

HAZM (2018) Python library for digesting Persian text. https://github.com/sobhe/hazm, [Online; accessed 21-April-2022]

Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. arXiv:1503.02531

Hosseini P, Hosseini P, Broniatowski DA (2020) Content analysis of persian/farsi tweets during COVID-19 pandemic in iran using NLP. CoRR arXiv:2005.08400

Hutto C, Gilbert E (2014) Vader: A parsimonious rule-based model for sentiment analysis of social media text. In: Proceedings of the International AAAI Conference on Web and Social Media 8(1):216–225. https://ojs.aaai.org/index.php/ICWSM/article/view/14550

Khan S (2014) Qualitative research method: grounded theory. Int J Bus Manag. https://doi.org/10.5539/ijbm.v9n11p224

Kharazi V (2021) Persian Stop Words List. https://github.com/kharazi/persian-stopwords, [Online; accessed 21-April-2022]

Kwok SWH, Vadde SK, Wang G (2021) Tweet topics and sentiments relating to covid-19 vaccination among australian twitter users: machine learning analysis. J Med Internet Res 23(5):e26953

Lan Z, Chen M, Goodman S, et al. (2019) ALBERT: A lite BERT for self-supervised learning of language representations. CoRR. arXiv:1909.11942

Le TT, Andreadakis Z, Kumar A et al. (2020) The COVID-19 vaccine development landscape. Nat Rev Drug Discov 19(5):305–306. https://doi.org/10.1038/d41573-020-00073-5

Liu Y, Ott M, Goyal N, et al. (2019) Roberta: A robustly optimized BERT pretraining approach. CoRR arXiv:1907.11692

Lyu H, Wang J, Wu W et al. (2022) Social media study of public opinions on potential covid-19 vaccines: informing dissent, disparities, and dissemination. Intell Med 2(1):1–12

Lyu JC, Han EL, Luli GK (2021) Covid-19 vaccine-related discussion on twitter: topic modeling and sentiment analysis. J Med Internet Res 23(6):e24435. https://doi.org/10.2196/24435

Newman D, Lau J, Grieser K, et al. (2010) Automatic evaluation of topic coherence. pp 100–108

Nezhad ZB, Deihimi MA (2022) Analyzing Iranian opinions toward covid-19 vaccination. IJID Regions. https://doi.org/10.1016/j.ijregi.2021.12.011

Organization WH (2021) Listings of WHO’s response to COVID-19. https://www.who.int/news/item/29-06-2020-covidtimeline, [Online; accessed 10-April-2022]

Sahu A, Gupta P, Chatterjee B (2014) Depression is more than just sadness: a case of excessive anger and its management in depression. Indian J Psychol Med 36(1):77–79

Sanh V, Debut L, Chaumond J, et al. (2019) Distilbert, a distilled version of BERT: smaller, faster, cheaper and lighter. CoRR arXiv:1910.01108

Shokrollahi O, Hashemi N, Dehghani M (2021) Discourse analysis of covid-19 in persian twitter social networks using graph mining and natural language processing. CoRR arXiv:2109.00298

Smedt TD, Daelemans W (2012) Pattern for python. J Mach Learn Res 13(66):2063–2067

Thelwall M, Kousha K, Thelwall S (2021) Covid-19 vaccine hesitancy on english-language twitter. Profesional de la Información 30(2). https://doi.org/10.3145/epi.2021.mar.12,https://revista.profesionaldelainformacion.com/index.php/EPI/article/view/86322

Troiano G, Nardi A (2021) Vaccine hesitancy in the era of covid-19. Public Health 194:245–251. https://doi.org/10.1016/j.puhe.2021.02.025

Villavicencio C, Macrohon JJ, Inbaraj XA et al. (2021) Twitter sentiment analysis towards covid-19 vaccines in the philippines using naïve bayes. Information. https://doi.org/10.3390/info12050204

Wicke P, Bolognesi MM (2021) Covid-19 discourse on twitter: How the topics, sentiments, subjectivity, and figurative frames changed over time. Front Commun. https://doi.org/10.3389/fcomm.2021.651997

Yang Z, Dai Z, Yang Y, et al. (2019) Xlnet: Generalized autoregressive pretraining for language understanding. CoRR arXiv:1906.08237

Yin J, Wang J (2014) A dirichlet multinomial mixture model-based approach for short text clustering. Association for Computing Machinery, New York, NY, USA, KDD ’14, p 233–242, https://doi.org/10.1145/2623330.2623715

Yousefinaghani S, Dara R, Mubareka S, et al. (2021) An analysis of covid-19 vaccine sentiments and opinions on twitter. International Journal of Infectious Diseases 108:256–262. https://doi.org/10.1016/j.ijid.2021.05.059,https://www.sciencedirect.com/science/article/pii/S1201971221004628

Zacharias C (2020) Twitter Intelligence Tool. https://pypi.org/project/twint/, [Online; accessed 19-April-2022]

Zhan J, Ren J, Fan J et al. (2015) Distinctive effects of fear and sadness induction on anger and aggressive behavior. Front Psychol 6:725