Nghiên cứu kết hợp giữa sinh học hệ thống và dược lý hệ thống về ảnh hưởng của Zingerone đối với các mô biểu bì tế bào người được tái tạo

Egyptian Journal of Medical Human Genetics - Tập 22 - Trang 1-15 - 2021
Elham Amjad1, Babak Sokouti1, Solmaz Asnaashari1
1Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Tóm tắt

Khi con người sống lâu hơn, dân số cao tuổi có thể gặp phải nhiều vấn đề. Xu hướng này thúc đẩy các nhà nghiên cứu tìm hiểu sâu hơn về khái niệm lão hóa để sản xuất ra các tác nhân chống lão hóa hiệu quả. Trong nghiên cứu hiện tại, ảnh hưởng của Zingerone (một hợp chất tự nhiên) đối với các mô biểu bì đã được phân tích bằng phương pháp sinh tin học. Để thực hiện mục tiêu này, chúng tôi đã chọn tập dữ liệu GEO GSE133338 để tiến hành các phương pháp sinh học hệ thống và dược lý hệ thống, từ việc xác định các gen có biểu hiện khác biệt cho đến phân tích quá trình tiến hóa gen, xác định cấu trúc tương tự của Zingerone và các đặc điểm của chúng (ví dụ: chống oxy hóa, chống viêm, và rối loạn da), xây dựng mạng lưới gen-hóa chất, phân tích mối quan hệ giữa gen và bệnh, và xác thực các gen quan trọng dựa trên các bằng chứng đã được công bố trong tài liệu. Quá trình xử lý tập dữ liệu vi mảng đã nhận diện mười ba gen thiết yếu giữa các mẫu đối chứng và mẫu được điều trị bằng Zingerone. Quá trình này đã phát hiện nhiều hợp chất hóa học và thảo dược có cấu trúc tương tự với các tác động liên quan đến da. Hơn nữa, chúng tôi đã nghiên cứu mối quan hệ của các gen có biểu hiện khác biệt với các bệnh liên quan đến da và xác thực các mối liên hệ trực tiếp của chúng với rối loạn da qua các bằng chứng hiện có trong tài liệu. Ngoài ra, phân tích dữ liệu vi mảng cũng chỉ ra vai trò quan trọng của các interleukin như là một phần của gia đình cytokine trong tiến trình lão hóa da. Zingerone, và có thể bất kỳ thành phần nào của Zingerone (ví dụ: các chức năng tương tự của hợp chất), có thể được sử dụng như các tác nhân điều trị trong việc quản lý các rối loạn da như lão hóa da. Tuy nhiên, các tác dụng có lợi của Zingerone cần được đánh giá trong các mô hình khác (ví dụ: ở người hoặc động vật) trong các nghiên cứu trong tương lai.

Từ khóa

#lão hóa #Zingerone #mô biểu bì #sinh học hệ thống #dược lý hệ thống #gen #rối loạn da

Tài liệu tham khảo

Rosenthal A, Jacoby T, Israilevich R, Moy R (2019) The role of bioidentical hormone replacement therapy in anti-aging medicine: a review of the literature. Int J Dermatol. Online ahead of print Bickers DR, Athar M (2006) Oxidative stress in the pathogenesis of skin disease. J Investig Dermatol 126(12):2565–2575 Sator PG (2006) Skin treatments and dermatological procedures to promote youthful skin. Clin Interv Aging 1(1):51 Dunaway S, Odin R, Zhou L, Ji L, Zhang Y, Kadekaro AL (2018) Natural antioxidants: multiple mechanisms to protect skin from solar radiation. Front Pharmacol 9:392 Choi J-S, Ryu J, Bae W-Y, Park A, Nam S, Kim J-E et al (2018) Zingerone suppresses tumor development through decreasing cyclin D1 expression and inducing mitotic arrest. Int J Mol Sci 19(9):2832 Kandemir FM, Yildirim S, Kucukler S, Caglayan C, Mahamadu A, Dortbudak MB (2018) Therapeutic efficacy of zingerone against vancomycin-induced oxidative stress, inflammation, apoptosis and aquaporin 1 permeability in rat kidney. Biomed Pharmacother 105:981–991 Mani V, Arivalagan S, Siddique AI, Namasivayam N (2016) Antioxidant and anti-inflammatory role of zingerone in ethanol-induced hepatotoxicity. Mol Cell Biochem 421(1–2):169–181 Ahmad B, Rehman MU, Amin I, Arif A, Rasool S, Bhat SA et al (2015) A review on pharmacological properties of zingerone (4-(4-Hydroxy-3-methoxyphenyl)-2-butanone). Sci World J 2015:816364 Lee J, Oh SW, Shin SW, Lee K-W, Cho J-Y, Lee J (2018) Zingerone protects keratinocyte stem cells from UVB-induced damage. Chem Biol Interact 279:27–33 Rashid S, Wali AF, Rashid SM, Alsaffar RM, Ahmad A, Jan BL, et al (2021) Zingerone Targets status epilepticus by blocking hippocampal neurodegeneration via regulation of redox imbalance, inflammation and apoptosis. Pharmaceuticals (Basel) 14(2) Mir B, Amin I, Rehman M, Razak R, Ali A, Baba O et al (2018) Chemoprotective potential of zingerone (vanillyl acetone) in cyclophosphamide-induced hepatic toxicity. Pharmacogn Mag 14(57):434–439 Amin I, Hussain I, Rehman MU, Mir BA, Ganaie SA, Ahmad SB et al (2021) Zingerone prevents lead-induced toxicity in liver and kidney tissues by regulating the oxidative damage in Wistar rats. J Food Biochem 45(3):e13241 Rehman MU, Rashid SM, Rasool S, Shakeel S, Ahmad B, Ahmad SB et al (2019) Zingerone (4-(4-hydroxy-3-methylphenyl)butan-2-one) ameliorates renal function via controlling oxidative burst and inflammation in experimental diabetic nephropathy. Arch Physiol Biochem 125(3):201–209 Bashir N, Ahmad SB, Rehman MU, Muzamil S, Bhat RR, Mir MUR et al (2021) Zingerone (4-(four-hydroxy-3-methylphenyl) butane-two-1) modulates adjuvant-induced rheumatoid arthritis by regulating inflammatory cytokines and antioxidants. Redox Rep Commun Free Radic Res 26(1):62–70 Wali AF, Rehman MU, Raish M, Kazi M, Rao PGM, Alnemer O, et al (2020) Zingerone [4-(3-methoxy-4-hydroxyphenyl)-butan-2] attenuates lipopolysaccharide-induced inflammation and protects rats from sepsis associated multi organ damage. Molecules 25(21) Ganaie MA, Al Saeedan A, Madhkali H, Jan BL, Khatlani T, Sheikh IA et al (2019) Chemopreventive efficacy zingerone (4-[4-hydroxy-3-methylphenyl] butan-2-one) in experimental colon carcinogenesis in Wistar rats. Environ Toxicol 34(5):610–625 Ahmad B, Rehman MU, Amin I, Mir MUR, Ahmad SB, Farooq A et al (2018) Zingerone (4-(4-hydroxy-3-methylphenyl) butan-2-one) protects against alloxan-induced diabetes via alleviation of oxidative stress and inflammation: probable role of NF-kB activation. Saudi Pharm J SPJ 26(8):1137–1145 Rehman MU, Ahmad B, Arif A, Rasool S, Farooq A, Razzaq R et al (2015) Zingerone protects against cisplatin-induced oxidative damage in the jejunum of Wistar rats. Orient Pharm Exp Med 15(3):199–206 Carvalho B. pd.hugene.2.1.st: Platform Design Info for Affymetrix HuGene-2_1-st. R package version 3.14.1. https://www.bioconductor.org/ 2015:1–2 da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57 da Huang W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13 Kim S, Chen J, Cheng T, Gindulyte A, He J, He S et al (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49(D1):D1388–D1395 Daina A, Michielin O, Zoete V (2014) iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model 54(12):3284–3301 Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717 Daina A, Zoete V (2016) A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11(11):1117–1121 Zoete V, Daina A, Bovigny C, Michielin O (2016) SwissSimilarity: a web tool for low to ultra high throughput ligand-based virtual screening. J Chem Inf Model 56(8):1399–1404 Gfeller D, Michielin O, Zoete V (2013) Shaping the interaction landscape of bioactive molecules. Bioinformatics 29(23):3073–3079 Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F et al (2020) The DisGeNET knowledge platform for disease genomics: 2019 update. NAR 48(D1):D845–D855 Xia J, Gill EE, Hancock REW (2015) NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc 10(6):823–844 Jallad KN (2017) Chemical characterization of sunscreens composition and its related potential adverse health effects. J Cosmet Dermatol 16(3):353–357 Ikehata H (2018) Mechanistic considerations on the wavelength-dependent variations of UVR genotoxicity and mutagenesis in skin: the discrimination of UVA-signature from UV-signature mutation. Photochem Photobiol Sci 17(12):1861–1871 Browne N, Donovan F, Murray P, Saha S (2014) Cyanobacteria as bio-factories for production of UV-screening compounds. OA Biotechnol 3(6) Cadet J, Sage E, Douki T (2005) Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res/Fundam Mol Mech Mutagen 571(1–2):3–17 Subedi L, Lee TH, Wahedi HM, Baek S-H, Kim SY (2017) Resveratrol-enriched rice attenuates UVB-ROS-induced skin aging via downregulation of inflammatory cascades. Oxid Med Cell Longev. 2017 Valencia A, Kochevar IE (2008) Nox1-based NADPH oxidase is the major source of UVA-induced reactive oxygen species in human keratinocytes. J Investig Dermatol 128(1):214–222 Rhodes LE, Gledhill K, Masoodi M, Haylett AK, Brownrigg M, Thody AJ et al (2009) The sunburn response in human skin is characterized by sequential eicosanoid profiles that may mediate its early and late phases. FASEB J 23(11):3947–3956 Hwang K-A, Yi B-R, Choi K-C (2011) Molecular mechanisms and in vivo mouse models of skin aging associated with dermal matrix alterations. Lar 27(1):1–8 Scharffetter-Kochanek K, Wlaschek M, Briviba K, Sies H (1993) Singlet oxygen induces collagenase expression in human skin fibroblasts. FEBS Lett 331(3):304–306 Wlaschek M, Heinen G, Poswig A, Schwarz A, Krieg T, Scharffetter-Kochanek K (1994) UVA-induced autocrine stimulation of fibroblast-derived collagenase/MMP-1 by interrelated loops of interleukin-1 and interleukin-6. Photochem Photobiol 59(5):550–556 Tanaka H, Okada T, Konishi H, Tsuji T (1993) The effect of reactive oxygen species on the biosynthesis of collagen and glycosaminoglycans in cultured human dermal fibroblasts. Arch Dermatol Res 285(6):352–355 Masaki H (2010) Role of antioxidants in the skin: anti-aging effects. J Dermatol Sci 58(2):85–90 Lee JY, Jang YW, Kang HS, Moon H, Sim SS, Kim CJ (2006) Anti-inflammatory action of phenolic compounds from Gastrodia elata root. Arch Pharm Res 29(10):849–858 Chen J, Yang J, Ma L, Li J, Shahzad N, Kim CK (2020) Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci Rep 10(1):2611 Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. NAR 35(suppl_1):D198–D201 Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. NAR 44(D1):D1045–D1053 Krinsky NI (1992) Mechanism of action of biological antioxidants. PSEBM 200(2):248–254 Nijveldt RJ, Van Nood E, Van Hoorn DE, Boelens PG, Van Norren K, Van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74(4):418–425 Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N (2016) Oxidative stress and inflammation: What polyphenols can do for us? Oxid Med Cell Longev 2016:7432797 Musa M (2013) Immune mechanism: a “double-edged sword.” Malays J Med Sci 20(3):61–67 Zouboulis CC, Ganceviciene R, Liakou AI, Theodoridis A, Elewa R, Makrantonaki E (2019) Aesthetic aspects of skin aging, prevention, and local treatment. Clin Dermatol 37(4):365–372 Matejuk A (2018) Skin immunity. Arch Immunol Ther Exp 66(1):45–54 Bennett MF, Robinson MK, Baron ED, Cooper KD (2008) Skin immune systems and inflammation: protector of the skin or promoter of aging? J Investig Dermatol Proc 13(1):15–19 Panahi Y, Fazlolahzadeh O, Atkin SL, Majeed M, Butler AE, Johnston TP et al (2019) Evidence of curcumin and curcumin analogue effects in skin diseases: a narrative review. J Cell Physiol 234(2):1165–1178 Vollono L, Falconi M, Gaziano R, Iacovelli F, Dika E, Terracciano C et al (2019) Potential of curcumin in skin disorders. Nutrients 11(9):2169 Borg M, Brincat S, Camilleri G, Schembri-Wismayer P, Brincat M, Calleja-Agius J (2013) The role of cytokines in skin aging. Climacteric 16(5):514–521 Shirato K, Koda T, Takanari J, Sakurai T, Ogasawara J, Imaizumi K et al (2018) Anti-inflammatory effect of ETAS® 50 by inhibiting nuclear factor-κB p65 nuclear import in ultraviolet-B-irradiated normal human dermal fibroblasts. Evid Based Complement Altern Med 2018:5072986 Shirato K, Koda T, Takanari J, Ogasawara J, Sakurai T, Ohno H et al (2018) ETAS® 50 attenuates ultraviolet-B-induced interleukin-6 expression by suppressing Akt phosphorylation in normal human dermal fibroblasts. Evid Based Complement Altern Med 2018:1547120 Guo J, Pijun Y, Wang L, Shi Y, Liu Y, Chen W (2017) Research progress and application outlook of paracrine functions of adipose-derived stem cells in facial anti-aging. Chin J Tissue Eng Res 38(5):789–794 Crane JD, MacNeil LG, Lally JS, Ford RJ, Bujak AL, Brar IK et al (2015) Exercise-stimulated interleukin-15 is controlled by AMPK and regulates skin metabolism and aging. Aging Cell 14(4):625–634 Swindell WR, Bojanowski K, Chaudhuri RK (2019) A Zingerone Analog, Acetyl Zingerone, bolsters matrisome synthesis, inhibits matrix metallopeptidases, and represses IL-17A target gene expression. J Investig Dermatol 140(3):602–614 Mohammadi Shahrokhi V, Ravari A, Mirzaei T, Zare-Bidaki M, Asadikaram G, Arababadi MK (2018) IL-17A and IL-23: plausible risk factors to induce age-associated inflammation in Alzheimer’s disease. Immunol Investig 47(8):812–822 Essawy SS (2011) Comparative study of the effect of allopurinol and nabumetone either alone or combined on Freund’s adjuvant-induced arthritis in rats. Med J Cairo Univ 79(2) Barth A, Kaiser N, Löffler U, Sourgens H, Klinger W (1994) Influence of the xanthine derivative denbufylline and the anti-inflammatory agent nabumetone on microsomal free radical production and lipid peroxidation in rat liver. Exp Toxicol Pathol 46(6):483–489 Jenner PN (1987) Nabumetone in the treatment of skin and soft tissue injury. Am J Med 83(4):101–106 Matsunami K (2018) Frailty and Caenorhabditis elegans as a benchtop animal model for screening drugs including natural herbs. Front Nutr 5:111 Olsen EA, Abernethy ML, Kulp-Shorten C, Callen JP, Glazer SD, Huntley A et al (1991) A double-blind, vehicle-controlled study evaluating masoprocol cream in the treatment of actinic keratoses on the head and neck. J Am Acad Dermatol 24(5):738–743 Yamauchi S, Sugahara T, Nakashima Y, Okada A, Akiyama K, Kishida T et al (2006) Radical and superoxide scavenging activities of matairesinol and oxidized matairesinol. Biosci Biotechnol Biochem 70(8):1934–1940 Xu P, Huang M-W, Xiao C-X, Long F, Wang Y, Liu S-Y et al (2017) Matairesinol suppresses neuroinflammation and migration associated with Src and ERK1/2-NF-κB pathway in activating BV2 microglia. Neurochem Res 42(10):2850–2860 Kim M-J, Kim J-Y, Jung T-K, Choi S-W, Yoon K-S (2006) Skin anti-aging effect of Forsythia viridissima L. extract. KSBB J 21(6):444–450 Behzad S, Sureda A, Barreca D, Nabavi SF, Rastrelli L, Nabavi SM (2017) Health effects of phloretin: from chemistry to medicine. Phytochem Rev 16(3):527–533 Oresajo C, Stephens T, Hino PD, Law RM, Yatskayer M, Foltis P et al (2008) Protective effects of a topical antioxidant mixture containing vitamin C, ferulic acid, and phloretin against ultraviolet-induced photodamage in human skin. J Cosmet Dermatol 7(4):290–297 Shin S, Kum H, Ryu D, Kim M, Jung E, Park D (2014) Protective effects of a new phloretin derivative against UVB-induced damage in skin cell model and human volunteers. Int J Mol Sci 15(10):18919–18940 Li F, Nitteranon V, Tang X, Liang J, Zhang G, Parkin KL et al (2012) In vitro antioxidant and anti-inflammatory activities of 1-dehydro-[6]-gingerdione, 6-shogaol, 6-dehydroshogaol and hexahydrocurcumin. Food Chem 135(2):332–337 Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN (2010) Comparative antioxidant and anti-inflammatory effects of [6]-gingerol,[8]-gingerol,[10]-gingerol and [6]-shogaol. J Ethnopharmacol 127(2):515–520 Han HS, Kim KB, Jung JH, An IS, Kim Y-J, An S (2018) Anti-apoptotic, antioxidant and anti-aging effects of 6-shogaol on human dermal fibroblasts. Biomed Dermatol 2(1):1–8 Chung W-Y, Jung Y-J, Surh Y-J, Lee S-S, Park K-K (2001) Antioxidative and antitumor promoting effects of [6]-paradol and its homologs. Mutat Res/Genet Toxicol Environ Mutagen 496(1–2):199–206 Sapkota A, Park SJ, Choi JW (2019) Neuroprotective effects of 6-shogaol and its metabolite, 6-paradol, in a mouse model of multiple sclerosis. Biomol Ther (Seoul) 27(2):152 Kim J-K, Kim Y, Na K-M, Surh Y-J, Kim T-Y (2007) [6]-Gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo. Free Rad Res 41(5):603–614 Lah TT, Nanni I, Trinkaus M, Metellus P, Dussert C, De Ridder L et al (2010) Toward understanding recurrent meningioma: the potential role of lysosomal cysteine proteases and their inhibitors. J Neurosurg 112(5):940–950 Tholen S, Biniossek ML, Gansz M, Gomez-Auli A, Bengsch F, Noel A et al (2013) Deletion of cysteine cathepsins B or L yields differential impacts on murine skin proteome and degradome. Mol Cell Proteom 12(3):611–625 Ruan J, Zheng H, Fu W, Zhao P, Su N, Luo R (2014) Increased expression of cathepsin L: a novel independent prognostic marker of worse outcome in hepatocellular carcinoma patients. PLoS ONE 9(11):e112136 Roth W, Deussing J, Botchkarev VA, Pauly-Evers M, Saftig P, Hafner A et al (2000) Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and pertubation of hair follicle cycling. FASEB J 14(13):2075–2086 Yamashita S, Tsujino Y, Moriguchi K, Tatematsu M, Ushijima T (2006) Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2’-deoxycytidine treatment and oligonucleotide microarray. Cancer Sci 97(1):64–71 Benavides F, Perez C, Blando J, Contreras O, Shen J, Coussens LM et al (2012) Protective role of cathepsin L in mouse skin carcinogenesis. Mol Carcinog 51(4):352–361 Naito A, Yamamoto H, Kagawa Y, Naito Y, Okuzaki D, Otani K et al (2015) RFPL4A increases the G1 population and decreases sensitivity to chemotherapy in human colorectal cancer cells. J Biol Chem 290(10):6326–6337 Gil J, Kim Y, Szeitz B, Doma V, Çakır U, de Almeida NP, et al (2021) Proteogenomics reveals how metastatic melanoma modulates the immune system to allow immune evasion. bioRxiv. 2021:2021.04.10.439245 Hunter E, Koutsothanasi C, Wilson A, Santos FC, Salter M, Westra JW, et al (2020) Development and validation of blood-based prognostic biomarkers for severity of COVID disease outcome using EpiSwitch 3D genomic regulatory immuno-genetic profiling. medRxiv. 2021:2021.06.21.21259145 Hu Z, Huang P, Yan Y, Zhou Z, Wang J, Wu G (2019) Hepatitis B virus X protein related lncRNA WEE2-AS1 promotes hepatocellular carcinoma proliferation and invasion. Biochem Biophys Res Commun 508(1):79–86 Naot D, Wilson LC, Allgrove J, Adviento E, Piec I, Musson DS et al (2020) Juvenile Paget’s disease with compound heterozygous mutations in TNFRSF11B presenting with recurrent clavicular fractures and a mild skeletal phenotype. Bone 130:115098 Laggner M, Copic D, Nemec L, Vorstandlechner V, Gugerell A, Gruber F et al (2020) Therapeutic potential of lipids obtained from γ-irradiated PBMCs in dendritic cell-mediated skin inflammation. EBioMedicine 55:102774 Fallahnezhad S, Jajarmi V, Shahnavaz S, Amini A, Ghoreishi SK, Kazemi M et al (2020) Improvement in viability and mineralization of osteoporotic bone marrow mesenchymal stem cell through combined application of photobiomodulation therapy and oxytocin. Lasers Med Sci 35(3):557–566 Hellemans J (2007) Identification and analysis of genes involved in skeletal dysplasias affecting growth and bone homeostasis. Ghent University Chen Y, Li H, Luo X, Liu H, Zhong Y, Wu X et al (2019) Moxibustion of Zusanli (ST36) and Shenshu (BL23) alleviates cartilage degradation through RANKL/OPG signaling in a rabbit model of rheumatoid arthritis. Evid Based Complement Altern Med 2019:6436420 Zhang XY, Yan QX, Guo XY, Chen CR, Chen RQ, Cai ZM et al (2016) Expression profile of SPACA5/Spaca5 in spermatogenesis and transitional cell carcinoma of the bladder. Oncol Lett 12(5):3731–3738 Fu Y, Yao N, Ding D, Zhang X, Liu H, Ma L et al (2020) TMEM158 promotes pancreatic cancer aggressiveness by activation of TGFβ1 and PI3K/AKT signaling pathway. J Cell Physiol 235(3):2761–2775 Mirizio E, Liu C, Yan Q, Waltermire J, Mandel R, Schollaert KL et al (2021) Genetic signatures from RNA sequencing of pediatric localized scleroderma skin. Front Pediatr 9:669116 Liu L, Zhang J, Li S, Yin L, Tai J (2020) Silencing of TMEM158 inhibits tumorigenesis and multidrug resistance in colorectal cancer. Nutr Cancer 72(4):662–671 Cheng Z, Guo J, Chen L, Luo N, Yang W, Qu X (2015) Overexpression of TMEM158 contributes to ovarian carcinogenesis. J Exp Clin Cancer Res 34(1):75 Lulli D, Carbone ML, Pastore S (2016) Epidermal growth factor receptor inhibitors trigger a type I interferon response in human skin. Oncotarget 7(30):47777–47793 Vezenkov LT, Tsekova DS, Kostadinova I, Mihaylova R, Vassilev NG, Danchev ND (2019) Synthesis of new galanthamine-peptide derivatives designed for prevention and treatment of Alzheimer’s disease. Curr Alzheimer Res 16(3):183–192 Boyd A, Bennuru S, Wang Y, Sanprasert V, Law M, Chaussabel D et al (2013) Quiescent innate response to infective filariae by human Langerhans cells suggests a strategy of immune evasion. Infect Immun 81(5):1420–1429 He L, Cai X, Cheng S, Zhou H, Zhang Z, Ren J et al (2019) Ornithine transcarbamylase downregulation is associated with poor prognosis in hepatocellular carcinoma. Oncol Lett 17(6):5030–5038 Fang F, Shangguan AJ, Kelly K, Wei J, Gruner K, Ye B et al (2013) Early growth response 3 (Egr-3) is induced by transforming growth factor-β and regulates fibrogenic responses. Am J Pathol 183(4):1197–1208 Ju A, Cho YC, Kim BR, Lee S, Le HTT, Vuong HL et al (2018) Anticancer effects of methanol extract of Myrmecodia platytyrea Becc. leaves against human hepatocellular carcinoma cells via inhibition of ERK and STAT3 signaling pathways. Int J Oncol 52(1):201–210 Müller A (2020) The Central Role of the Transcriptional Regulator I [kappa] B [zeta] in Psoriasis: Eberhard Karls Universität Tübingen Zhang J, Gao D, Zhang H (2018) Upregulation of miR-614 promotes proliferation and inhibits apoptosis in ovarian cancer by suppressing PPP2R2A expression. Mol Med Rep 17(5):6285–6292 Ekman AK, Vegfors J, Eding CB, Enerbäck C (2017) Overexpression of Psoriasin (S100A7) contributes to dysregulated differentiation in psoriasis. Acta Derm Venereol 97(4):441–448 Raikhy G, Woodby BL, Scott ML, Shin G, Myers JE, Scott RS, et al (2019) Suppression of stromal interferon signaling by human papillomavirus 16. J Virol 93(19) Qian P, Banerjee A, Wu ZS, Zhang X, Wang H, Pandey V et al (2012) Loss of SNAIL regulated miR-128-2 on chromosome 3p22.3 targets multiple stem cell factors to promote transformation of mammary epithelial cells. Cancer Res 72(22):6036–6050 Zhuang L, Xu L, Wang P, Meng Z (2015) Serum miR-128-2 serves as a prognostic marker for patients with hepatocellular carcinoma. PLoS ONE 10(2):e0117274 Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y et al (2016) MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget 7(14):17520–17531 Cao T, Xiao T, Huang G, Xu Y, Zhu JJ, Wang K et al (2017) CDK3, target of miR-4469, suppresses breast cancer metastasis via inhibiting Wnt/β-catenin pathway. Oncotarget 8(49):84917–84927 Sleptsov AA, Nazarenko MS, Lebedev IN, Skriabin NA, Frolov AV, Popov VA et al (2014) Somatic genome variations in vascular tissues and peripheral blood leukocytes in patients with atherosclerosis. Genetika 50(8):986–995 Xue HX, Li HF, Wang T, Li WJ, Bian WC (2020) LncRNA HCG11 suppresses laryngeal carcinoma cells progression via sponging miR-4469/APOM axis. Eur Rev Med Pharmacol Sci 24(6):3174–3182 Nascimento e Pontes MG, da Silveira SM, Trindade Filho JC, Rogatto SR, Viana de Camargo JL (2013) Chromosomal imbalances in successive moments of human bladder urothelial carcinoma. Urol Oncol 31(6):827–35 Kang W, Son B, Park S, Choi D, Park T (2021) UV-irradiation- and inflammation-induced skin barrier dysfunction is associated with the expression of olfactory receptor genes in human keratinocytes. Int J Mol Sci 22(6) Lu MC, Yu HC, Yu CL, Huang HB, Koo M, Tung CH et al (2016) Increased expression of long noncoding RNAs LOC100652951 and LOC100506036 in T cells from patients with rheumatoid arthritis facilitates the inflammatory responses. Immunol Res 64(2):576–583 Muret K, Désert C, Lagoutte L, Boutin M, Gondret F, Zerjal T et al (2019) Long noncoding RNAs in lipid metabolism: literature review and conservation analysis across species. BMC Genom 20(1):882 Liu G, Wang Y, Zheng W, Cheng H, Zhou R (2019) P11 loss-of-function is associated with decreased cell proliferation and neurobehavioral disorders in mice. Int J Biol Sci 15(7):1383–1395 Edqvist PH, Fagerberg L, Hallström BM, Danielsson A, Edlund K, Uhlén M et al (2015) Expression of human skin-specific genes defined by transcriptomics and antibody-based profiling. J Histochem Cytochem 63(2):129–141 Gandhi M, Bhatt P, Chauhan G, Gupta S, Misra A, Mashru R (2019) IGF-II-conjugated nanocarrier for brain-targeted delivery of p11 gene for depression. AAPS PharmSciTech 20(2):50 van Calker D, Serchov T, Normann C, Biber K (2018) Recent insights into antidepressant therapy: distinct pathways and potential common mechanisms in the treatment of depressive syndromes. Neurosci Biobehav Rev 88:63–72 Fackovcova D, Kristova V, Kriska M (2000) Renal damage induced by the treatment with non-opioid analgesics–theoretical assumption or clinical significance. Bratisl Lek Listy 101(8):417–422 Roy HK, Karolski WJ, Ratashak A (2001) Distal bowel selectivity in the chemoprevention of experimental colon carcinogenesis by the non-steroidal anti-inflammatory drug nabumetone. Int J Cancer 92(4):609–615 Giuliano F, Ferraz JG, Pereira R, de Nucci G, Warner TD (2001) Cyclooxygenase selectivity of non-steroid anti-inflammatory drugs in humans: ex vivo evaluation. Eur J Pharmacol 426(1–2):95–103 Takeuchi K, Smale S, Premchand P, Maiden L, Sherwood R, Thjodleifsson B et al (2006) Prevalence and mechanism of nonsteroidal anti-inflammatory drug-induced clinical relapse in patients with inflammatory bowel disease. Clin Gastroenterol Hepatol 4(2):196–202 Saleh TS, Calixto JB, Medeiros YS (1999) Effects of anti-inflammatory drugs upon nitrate and myeloperoxidase levels in the mouse pleurisy induced by carrageenan. Peptides 20(8):949–956 Audouin C, Mestdagh N, Lassoie MA, Houssin R, Hénichart JP (2001) N-Aminoindoline derivatives as inhibitors of 5-lipoxygenase. Bioorg Med Chem Lett 11(6):845–848 Lambert JD, Meyers RO, Timmermann BN, Dorr RT (2001) Pharmacokinetic analysis by high-performance liquid chromatography of intravenous nordihydroguaiaretic acid in the mouse. J Chromatogr B Biomed Sci Appl 754(1):85–90 Hong H, Branham WS, Ng HW, Moland CL, Dial SL, Fang H et al (2015) Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein. Toxicol Sci 143(2):333–348 Wang B, Yu SC, Jiang JY, Porter GW, Zhao LT, Wang Z et al (2011) An inhibitor of arachidonate 5-lipoxygenase, Nordy, induces differentiation and inhibits self-renewal of glioma stem-like cells. Stem Cell Rev Rep 7(2):458–470 Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242 Fajrin FA, Rahmayanti F, Pratoko DK. The binding prediction of 6-paradol and its derivatives on TRPV1 agonist as a new compound for treating painful diabetic neuropathy. Journal ILMU DASAR. 2020(2):133–8%V 21 Eren D, Betul YM (2016) Revealing the effect of 6-gingerol, 6-shogaol and curcumin on mPGES-1, GSK-3β and β-catenin pathway in A549 cell line. Chem Biol Interact 258:257–265 Prasad S, Tyagi AK (2015) Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroenterol Res Pract 2015:142 Peng S, Yao J, Liu Y, Duan D, Zhang X, Fang J (2015) Activation of Nrf2 target enzymes conferring protection against oxidative stress in PC12 cells by ginger principal constituent 6-shogaol. Food Funct 6(8):2813–2823 Kim SO, Kundu JK, Shin YK, Park JH, Cho MH, Kim TY et al (2005) [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-kappaB in phorbol ester-stimulated mouse skin. Oncogene 24(15):2558–2567 Geng X, Liu H, Yuwen Q, Wang J, Zhang S, Zhang X, et al. Protective effects of zingerone on high cholesterol diet-induced atherosclerosis through lipid regulatory signaling pathway. Human & experimental toxicology. 2021:9603271211006170