Vật liệu hợp nhất gồm graphene oxit khử và carbon xốp được chế tạo bằng phương pháp cacbon hóa khung imidazolate zeolit (loại ZIF-8) để xác định chloramphenicol bằng phương pháp voltammetrique

Microchimica Acta - Tập 186 - Trang 1-8 - 2019
Yue Yuan1, Xianzhen Xu1, Jianfei Xia1, Feifei Zhang1, Zonghua Wang1, Qingyun Liu2
1College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Laboratory of Fiber Materials and Modern Textile, Qingdao University, Qingdao, People’s Republic of China
2College of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People’s Republic of China

Tóm tắt

Carbon xốp được chế tạo từ khung imidazolate zeolit (loại ZIF-8) bằng phương pháp cacbon hóa ở 800 °C (Z-800). Một vật liệu hợp nhất sau đó được tạo ra bằng cách đồng điện phân trực tiếp Z-800 với graphene oxit (Z-800/rGO). Z-800 được dop bằng nitơ với độ dẫn điện tốt và thể hiện hoạt tính điện xúc tác. Z-800 dễ dàng thực hiện quá trình chuyển hóa khối lượng và cũng ngăn ngừa việc graphene bị tập hợp trong quá trình điện phân. Hợp chất này được đặt trên một điện cực carbon thủy tinh (GCE) để tạo ra một cảm biến điện hóa nhằm phát hiện chloramphenicol (CAP). Dưới các điều kiện tối ưu, phản ứng của GCE đã được sửa đổi (thường đo ở điện thế thấp −0.07 V so với Ag/AgCl) là tuyến tính trong khoảng nồng độ CAP từ 1 đến 180 μM với giới hạn phát hiện là 0.25 μM (S/N = 3). Trong quan điểm của chúng tôi, phương pháp này có khả năng áp dụng rộng rãi trong việc chế tạo nhiều loại composite carbon xốp/rGO khác (có dop) để sử dụng trong các cảm biến (sinh) hóa học.

Từ khóa

#Carbon xốp #khung imidazolate zeolit #graphene oxit #cảm biến điện hóa #chloramphenicol

Tài liệu tham khảo

Shalit I, Marks MI (1984) Chloramphenicol in the 1980s. Drugs 28:281–291. https://doi.org/10.2165/00003495-198428040-00001 Festing MFW, Diamani P, Turton JA (2001) Strain differences in haematological response to chloroamphenicol succinate in mice: implications for toxicological research. Food Chem Toxicol 39:375–383. https://doi.org/10.1016/S0278-6915(00)00149-6 Chen H, Chen H, Ying J, Huang J, Liao L (2009) Dispersive liquid–liquid microextraction followed by high-performance liquid chromatography as an efficient and sensitive technique for simultaneous determination of chloramphenicol and thiamphenicol in honey. Anal Chim Acta 632:80–85. https://doi.org/10.1016/j.aca.2008.10.068 Li P, Qiu Y, Cai H, Kong Y, Tang Y, Wang D, Xie M (2006) Simultaneous determination of chloramphenicol, thiamphenicol, and florfenicol residues in animal tissues by gas chromatography/mass spectrometry. Chin J Chromatogr 24:14–18. https://doi.org/10.1016/S1872-2059(06)60002-3 Rodziewicz L, Zawadzka I (2008) Rapid determination of chloramphenicol residues in milk powder by liquid chromatography-electrospray ionization tandem mass spectrometry. Talanta 75:846–850. https://doi.org/10.1016/j.talanta.2007.12.022 Gómez-Taylor B, Palomeque M, MateoJVG CJM (2006) Photoinduced chemiluminescence of pharmaceuticals. J Pharmaceut Biomed 41:347–357. https://doi.org/10.1016/j.jpba.2005.11.040 Yang G, Zhao F (2015) Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@molecularly imprinted polymer. Biosens Bioelectron 64:416–422. https://doi.org/10.1016/j.bios.2014.09.041 Zhou YL, Sui CJ, Yin HS, Wang Y, Wang MH, Ai SY (2018) Tungsten disulfide (WS2) nanosheet-based photoelectrochemical aptasensing of chloramphenicol. Microchim Acta 185:453–461. https://doi.org/10.1007/s00604-018-2970-8 Chen M, Gan N, Zhang HR, Yan ZD, Li TH, Chen YJ, Xu Q, Jiang QL (2016) Electrochemical simultaneous assay of chloramphenicol and PCB72 using magnetic and aptamer-modified quantum dot-encoded dendritic nanotracers for signal amplification. Microchim Acta 183:1099–1106. https://doi.org/10.1007/s00604-015-1695-1 Borowiec J, Wang R, Zhu L, Zhang J (2013) Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol. Electrochim Acta 99:138–144. https://doi.org/10.1016/j.electacta.2013.03.092 Kong FY, Chen TT, Wang JY, Fang HL, Fan DH, Wang W (2016) UV-assisted synthesis of tetrapods-like titanium nitride-reduced graphene oxide nano-hybrids for electrochemical determination of chloramphenicol. Sensor Actuat B-Chem 225:298–304. https://doi.org/10.1016/j.snb.2015.11.041 Yan ZD, Gan N, Li TH, Cao YT, Chen YJ (2016) A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling. Biosens Bioelectron 78:51–57. https://doi.org/10.1016/j.bios.2015.11.019 Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094. https://doi.org/10.1002/adma.200501576 Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M, Yaghi OM (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–−3877 https://pubs.acs.org/doi/abs/10.1021/ja809459e Ryoo R, Joo SH, Jun (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103:7743–7746 https://pubs.acs.org/doi/abs/10.1021/jp991673a Lu AH, Schüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18:1793–1805. https://doi.org/10.1002/adma.200600148 Chaikittisilp W, Ariga K, Yamauchi Y (2013) A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J Mater Chem A 1:14–19 https://pubs.rsc.org/en/Content/ArticleLanding/2013/TA/C2TA00278G#!divAbstract Kaneti YV, Tang J, Salunkhe RR, Jiang XC, Yu AB, Wu KC, Yamauchi Y (2017) Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv Mater 29(12). https://doi.org/10.1002/adma.201604898 Janiak C, Vieth JK (2010) MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). J Cheminformatics 34:2366–2388 https://pubs.rsc.org/en/Content/ArticleLanding/2010/NJ/c0nj00275e#!divAbstract Babarao R, Hu ZQ, Jiang JW (2007) Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. Langmuir 23:659–666 https://pubs.acs.org/doi/abs/10.1021/la062289p Phan A, Doonan CJ, Uribe-romo FJ, Knobler CB, O’Keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res:58–67 https://pubs.acs.org/doi/abs/10.1021/ar900116g Torad NL, Hu M, Kamachi Y, Takai K, Imura M, Naito M, Yamauchi Y (2013) Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem Commun 49:2521–2523 https://pubs.rsc.org/en/Content/ArticleLanding/2013/CC/c3cc38955c#!divAbstract Chen LF, Lu Y, Lou XW (2017) Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ Sci 10:1777–1783 https://pubs.rsc.org/en/Content/ArticleLanding/2017/EE/C7EE00488E#!divAbstract Zhong HX, Wang J, Zhang YW, Xu WL, Xing W, Xu D, Zhang YF, Zhang XB (2015) ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew Chem Int Edit 53:14235–14239. https://doi.org/10.1002/anie.201408990 Liu CB, Wang K, Luo SL, Tang YH, Chen LY (2011) Direct electrodeposition of graphene enabling the one-step synthesis of graphene-metal nanocomposite films. Small 7:1203–1206. https://doi.org/10.1002/smll.201002340 Pan Y, Liu YY, Zeng GF, Zhao L, Lai ZP (2011) Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun 47:2071–2073 https://pubs.rsc.org/en/Content/ArticleLanding/2011/CC/c0cc05002d#!divAbstract Xu JY, Xia JF, Zhang FF, Wang ZH (2017) An electrochemical sensor based on metal-organic framework-derived porous carbon with high degree of graphitization for electroanalysis of various substances. Electrochim Acta 251:71–80. https://doi.org/10.1016/j.electacta.2017.08.114 Hummers JWS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339 Zhang YX, Xu JY, Xia JF, Zhang FF, Wang ZH (2018) MOF-derived porous Ni2P/graphene composites with enhanced electrochemical properties for sensitive nonenzymatic glucose sensing. ACS Appl Mater Interfaces 10:39151–39160 https://pubs.acs.org/doi/10.1021/acsami.8b11867 Yang ZX, Xia YD, Sun XZ, Mokaya R (2006) Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping. J Phys Chem B 110:18424–18431 https://pubs.acs.org/doi/abs/10.1021/jp0639849 Zhang X, Zhang YC, Zhang JW (2016) A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures. Talanta 161:567–573. https://doi.org/10.1016/j.talanta.2016.09.013 Bai X, Qin CD, Huang X (2016) Voltammetric determination of chloramphenicol using a carbon fiber microelectrode modified with Fe3O4 nanoparticles. Microchim Acta 183:2973–2981. https://doi.org/10.1007/s00604-016-1945-x Munawar A, Tahir MA, Shaheen A, Lieberzeit PA, Khan WS, Bajwa SZ (2018) Investigating nanohybrid material based on 3D CNTs@cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol. J Hazard Mater 342:96–106. https://doi.org/10.1016/j.jhazmat.2017.08.014 Codognoto L, Winter E, Doretto KM, Monteiro GB, Rath S (2010) Electroanalytical performance of self-assembled monolayer gold electrode for chloramphenicol determination. Microchim Acta 169:345–351. https://doi.org/10.1007/s00604-010-0339-8