A homogeneous submanifold with nonzero parallel mean curvature vector in a Euclidean sphere

Satoshi Maeda1, Seiichi Udagawa2
1Department of Mathematics, Saga University, Saga, Japan
2Department of Mathematics, School of Medicine, Nihon University, Itabashi, Tokyo, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adachi T., Maeda S., Yamagishi M.: Length spectrum of geodesic spheres in a non-flat complex space form. J. Math. Soc. Jpn. 54, 373–408 (2002)

Blair D.E.: Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics, vol. 509. Springer, Berlin (1976)

do Carmo M.P., Wallach N.R.: Minimal immersions of spheres into spheres. Ann. Math. 93, 43–62 (1971)

Ferus D.: Immersions with parallel second fundamental form. Math. Z. 140, 87–93 (1974)

Niebergall R., Ryan P.J. et al.: Real hypersurfaces in complex space forms. In: Cecil, T.E. (eds) Tight and Taut Submanifolds, pp. 233–305. Cambridge University Press, Cambridge (1998)

O’Neill B.: Isotropic and Kaehler immersions. Can. J. Math. 17, 907–915 (1965)

Takahashi T.: Minimal immersions of Riemannian manifolds. J. Math. Soc. Jpn. 18, 380–385 (1966)

Weinstein A.: Distance spheres in complex projective spaces. Proc. Am. Math. Soc. 39, 649–650 (1973)