A homogeneous space whose complement is rigid
Tóm tắt
We construct a homogeneous subspace of 2ω whose complement is dense in 2ω and rigid. Using the same method, assuming Martin’s Axiom, we also construct a countable dense homogeneous subspace of 2ω whose complement is dense in 2ω and rigid.
Tài liệu tham khảo
P. Alexandroff and P. Urysohn, Mémoire sur les espaces topologiques compacts, Verh. Akad. Wetensch. Amsterdam 14, 1929.
F. D. Ancel, P. F. Duvall and S. Singh, Rigid 3-dimensional compacta whose squares are manifolds, Proceedings of the American Mathematical Society 88 (1983), 330–332.
F. D. Ancel and S. Singh, Rigid finite-dimensional compacta whose squares are manifolds, Proceedings of the American Mathematical Society 87 (1983), 342–346.
A. V. Arkhangel’skiĭ and J. van Mill, Topological homogeneity, in Recent Progress in General Topology III, Atlantis Press, 2014, pp. 1–68.
S. Baldwin and R. E. Beaudoin, Countable dense homogeneous spaces under Martin's axiom, Israel Journal of Mathematics 65 (1989), 153–164.
H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fundamenta Mathematicae 60 (1967), 241–249.
J. Dijkstra, A rigid space whose square is the Hilbert space, Proceedings of the American Mathematical Society 93 (1985), 118–120.
J. Dijkstra, A rigid imbedding of the Hilbert space in the Hilbert cube, Bulletin of the Polish Academy of Sciences Mathematics 34 (1986), 225–229.
E. K. van Douwen, A compact space with a measure that knows which sets are homeomorphic, Advances in Mathematics 52 (1984), 1–33.
F. van Engelen, A decomposition of R into two homeomorphic rigid parts, Topology and its Applications 17 (1984), 275–285.
F. van Engelen and J. van Mill, Decompositions of rigid spaces, Proceedings of the American Mathematical Society 89 (1983), 533–536.
F. van Engelen, A.W. Miller and J. Steel, Rigid Borel sets and better quasi-order theory, in Logic and Combinatorics (Arcata, Calif., 1985), Contemporary Mathematics, 65 (1987), 199–222, American Mathematical Society, Providence, RI.
J. de Groot and R. J. Wille, Rigid continua and topological group-pictures, Archiv der Mathematik 9 (1958), 441–446.
A. S. Kechris, Classical Descriptive set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995.
K. Kunen, Set Theory, Studies in Logic (London), 34, College Publications, London, 2011.
K. Kunen, A. Medini and L. Zdomskyy, Seven characterizations of nonmeager Pfilters, Fundamenta Mathematicae 231 (2015), 189–208.
C. Kuratowski, Sur la puissance de l'ensemble des “nombres de dimension” au sens de M. Fréchet, Fundamenta Mathematicae 8 (1926), 201–208.
L. B. Lawrence, A rigid subspace of the real line whose square is a homogeneous subspace of the plane, Transactions of the American Mathematical Society 357 (2005), 2535–2556.
A. Medini, Products and countable dense homogeneity, Top. Proc. 46 (2015), 135–143.
J. van Mill, A rigid space X for which X ×X is homogeneous; an application of infinite-dimensional topology, Proceedings of the American Mathematical Society 83 (1981), 597–600.
J. van Mill, Homogeneous subsets of the real line, Compositio Mathematica 46 (1982), 3–13.
J. van Mill, Sierpiński's technique and subsets of R, Topology and its Applications 44 (1992), 241–261.
J. van Mill, The Infinite-dimensional Topology of Function Spaces, North-Holland Mathematical Library, 64. North-Holland Publishing Co., Amsterdam, 2001.
J. van Mill and E. Wattel, Partitioning spaces into homeomorphic rigid parts, Colloquium Mathematicum 50 (1985), 95–102.
S. Shelah, Decomposing topological spaces into two rigid homeomorphic subspaces, Israel Journal of Mathematics 63 (1988), 183.